Orthogonal polynomials for exponential weights x2ρe-2Q(x) on [0, d), II

被引:28
|
作者
Levin, E
Lubinsky, D [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Open Univ, Dept Math, IL-43107 Raanana, Israel
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jat.2005.05.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I = [0, d), where d is finite or infinite. Let W-rho (x) = x(rho) exp (- Q (x)), where rho > - 1/2 and Q is continuous and increasing on I, with limit infinity at d. We obtain further bounds on the orthonormal polynomials associated with the weight W-rho(2), finer spacing on their zeros, and estimates of their associated fundamental polynomials of Lagrange interpolation. In addition, we obtain weighted Markov and Bernstein inequalities. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:107 / 143
页数:37
相关论文
共 50 条
  • [21] On the Exponential Diophantine Equation (an-2)(bn-2) = x2*
    Siar, Z.
    Keskin, R.
    MATHEMATICAL NOTES, 2022, 111 (5-6) : 903 - 912
  • [22] The Pell equation x2 - Py2 = Q
    Tekcan, Ahmet
    Özkoç, Arzu
    Kocapinar, Canan
    Alkan, Hatice
    International Journal of Computational and Mathematical Sciences, 2010, 4 (02): : 59 - 62
  • [23] 构造x2≤0解赛题
    赵平
    中学数学, 2009, (04) : 48 - 48
  • [24] HAMILTONIAN H=(-1/2)D2/DX2 + X2/2 + LAMBDA/X2 REOBSERVED
    LATHOUWERS, L
    JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (07) : 1393 - 1395
  • [25] DNA codes over GR(23, d)[X]/⟨X2, 2X⟩
    alvarez-Garcia, C.
    Castillo-Guillen, C. A.
    Badaoui, Mohamed
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2024,
  • [26] Reinvestigate the C2π-X2π(0,0) band of AgO†
    Zhang, Qiang
    Zhang, De-ping
    Zhu, Bo-xing
    Gu, Jing-wang
    Zhao, Dong-feng
    Chena, Yang
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2020, 33 (01) : 75 - 78
  • [27] SOLVABILITY OF A COMMUTATIVE ALGEBRA WHICH SATISFIES (x2)2=0
    Guzzo, H., Jr.
    Behn, A.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (01) : 417 - 422
  • [28] SOME EXPONENTIAL DIOPHANTINE EQUATIONS II: THE EQUATION x2 - Dy2 = kz FOR EVEN k
    Fujita, Yasutsugu
    Le, Maohua
    MATHEMATICA SLOVACA, 2022, 72 (02) : 341 - 354
  • [29] Matrix-valued Orthogonal Polynomials Related to (SU(2) x SU(2), diag), II
    Koelink, Erik
    van Pruijssen, Maarten
    Roman, Pablo
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2013, 49 (02) : 271 - 312
  • [30] ON SOME 2D ORTHOGONAL q-POLYNOMIALS
    Ismail, Mourad E. H.
    Zhang, Ruiming
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (10) : 6779 - 6821