SOME EXPONENTIAL DIOPHANTINE EQUATIONS II: THE EQUATION x2 - Dy2 = kz FOR EVEN k

被引:2
|
作者
Fujita, Yasutsugu [1 ]
Le, Maohua [2 ]
机构
[1] Nihon Univ, Coll Ind Technol, Dept Math, 2-11-1 Shin Ei, Narashino, Chiba, Japan
[2] Lingnan Normal Coll, Inst Math, Zhanjiang 524048, Guangdong, Peoples R China
关键词
Polynomial-exponential Diophantine equation; explicit formula for integer solutions; representation of integer by binary quadratic primitive form;
D O I
10.1515/ms-2022-0023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a nonsquare integer, and let k be an integer with vertical bar k vertical bar >= 1 and gcd(D, k) = 1. In the part I of this paper, using some properties on the representation of integers by binary quadratic primitive forms with discriminant 4D, M.-H. Le gave a series of explicit formulas for the integer solutions (x,y,z) of the equation x(2) - Dy-2 = k(z), gcd(x,y) = 1, z > 0 for 2 inverted iota vertical bar k vertical bar or is a power of 2. In this part, we give similar results for the other cases of k. (C) 2022 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:341 / 354
页数:14
相关论文
共 50 条
  • [1] On the Diophantine equations x2 - Dy2 = -1 and x2 - Dy2 = 4
    Chen, Bingzhou
    Luo, Jiagui
    AIMS MATHEMATICS, 2019, 4 (04): : 1170 - 1180
  • [2] On the diophantine equation x2 − Dy2 = n
    DaSheng Wei
    Science China Mathematics, 2013, 56 : 227 - 238
  • [3] SOME REMARKS ON DIOPHANTINE EQUATIONS X2 - DY4 = 1 AND X4 - DY2 = 1
    LJUNGGREN, W
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1966, 41 (163P): : 542 - +
  • [4] ON THE EXPONENTIAL DIOPHANTINE EQUATION x2
    Asthana, Shivangi
    Singh, Madan Mohan
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2019, 44 (01): : 15 - 30
  • [5] An Exponential Diophantine Equation x2
    Muthuvel, S.
    Venkatraman, R.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1125 - 1128
  • [6] SOLUTIONS OF DIOPHANTINE EQUATION X2 - DY4 = K
    LAL, M
    DAWE, J
    MATHEMATICS OF COMPUTATION, 1968, 22 (103) : 679 - +
  • [7] The diophantine equation d2x4+1=Dy2
    Cohn, JHE
    QUARTERLY JOURNAL OF MATHEMATICS, 2000, 51 : 183 - 184
  • [8] On the Exponential Diophantine Equation (an-2)(bn-2) = x2*
    Siar, Z.
    Keskin, R.
    MATHEMATICAL NOTES, 2022, 111 (5-6) : 903 - 912
  • [9] ON THE DIOPHANTINE EQUATION x2
    Alan, Murat
    Aydin, Mustafa
    ARCHIVUM MATHEMATICUM, 2023, 59 (05): : 411 - 420
  • [10] The Diophantine equation x2
    Nguyen Xuan Tho
    ANNALES MATHEMATICAE ET INFORMATICAE, 2021, 54 : 121 - 139