SOME EXPONENTIAL DIOPHANTINE EQUATIONS II: THE EQUATION x2 - Dy2 = kz FOR EVEN k

被引:2
|
作者
Fujita, Yasutsugu [1 ]
Le, Maohua [2 ]
机构
[1] Nihon Univ, Coll Ind Technol, Dept Math, 2-11-1 Shin Ei, Narashino, Chiba, Japan
[2] Lingnan Normal Coll, Inst Math, Zhanjiang 524048, Guangdong, Peoples R China
关键词
Polynomial-exponential Diophantine equation; explicit formula for integer solutions; representation of integer by binary quadratic primitive form;
D O I
10.1515/ms-2022-0023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a nonsquare integer, and let k be an integer with vertical bar k vertical bar >= 1 and gcd(D, k) = 1. In the part I of this paper, using some properties on the representation of integers by binary quadratic primitive forms with discriminant 4D, M.-H. Le gave a series of explicit formulas for the integer solutions (x,y,z) of the equation x(2) - Dy-2 = k(z), gcd(x,y) = 1, z > 0 for 2 inverted iota vertical bar k vertical bar or is a power of 2. In this part, we give similar results for the other cases of k. (C) 2022 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:341 / 354
页数:14
相关论文
共 50 条