Gender classification using principal geodesic analysis and Gaussian mixture models

被引:0
|
作者
Wu, Jing [1 ]
Smith, William A. P. [1 ]
Hancock, Edwin R. [1 ]
机构
[1] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim in this paper is to show how to discriminate gender using a parameterized representation of fields of facial surface normals (needle-maps) which can be extracted from 2D intensity images using shape-from-shading (SFS). We makes use of principle geodesic analysis (PGA) to parameterize the facial needle-maps. Using feature selection, we determine which of the components of the resulting parameter vector are the most significant in distinguishing gender. Using the EM algorithm we distinguish gender by fitting a two component mixture model to the vectors of selected features. Results on real-world data reveal that the method gives gender discrimination results that are comparable to human observers.
引用
收藏
页码:58 / 67
页数:10
相关论文
共 50 条
  • [41] Semantic Scene Classification with Generalized Gaussian Mixture Models
    Elguebaly, Tarek
    Bouguila, Nizar
    [J]. IMAGE ANALYSIS AND RECOGNITION (ICIAR 2015), 2015, 9164 : 159 - 166
  • [42] Combustion Sound Classification Employing Gaussian Mixture Models
    Lupu, E.
    Ghiurcau, M. V.
    Hodor, V.
    Emerich, S.
    [J]. PROCEEDINGS OF 2010 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS (AQTR 2010), VOLS. 1-3, 2010,
  • [43] Gaussian Mixture Models for Probabilistic Classification of Breast Cancer
    Prabakaran, Indira
    Wu, Zhengdong
    Lee, Changgun
    Tong, Brian
    Steeman, Samantha
    Koo, Gabriel
    Zhang, Paul J.
    Guvakova, Marina A.
    [J]. CANCER RESEARCH, 2019, 79 (13) : 3492 - 3502
  • [44] Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    Choi, SW
    Park, JH
    Lee, IB
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (08) : 1377 - 1387
  • [45] Voice Source Waveform Analysis and Synthesis using Principal Component Analysis and Gaussian Mixture Modelling
    Gudnason, Jon
    Thomas, Mark R. P.
    Naylor, Patrick A.
    Ellis, Dan P. W.
    [J]. INTERSPEECH 2009: 10TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2009, VOLS 1-5, 2009, : 120 - +
  • [46] Fault detection using hierarchical variational Gaussian mixture model and principal polynomial analysis
    Li Y.
    Yang D.
    Zhao L.
    Zhang C.
    [J]. Huagong Xuebao/CIESC Journal, 2021, 72 (03): : 1616 - 1626
  • [47] Internet-Wide Scanners Classification using Gaussian Mixture and Hidden Markov Models
    De Santis, Giulia
    Lahmadi, Abdelkader
    Francois, Jerome
    Festor, Olivier
    [J]. 2018 9TH IFIP INTERNATIONAL CONFERENCE ON NEW TECHNOLOGIES, MOBILITY AND SECURITY (NTMS), 2018,
  • [48] mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models
    Scrucca, Luca
    Fop, Michael
    Murphy, T. Brendan
    Raftery, Adrian E.
    [J]. R JOURNAL, 2016, 8 (01): : 289 - 317
  • [49] Texture classification using relative phase and Gaussian mixture models in the complex wavelet domain
    Oulhaj, Hind
    Rziza, Mohammed
    Amine, Aouatif
    Jennane, Rachid
    El Hassouni, Mohammed
    [J]. 2016 IEEE/ACS 13TH INTERNATIONAL CONFERENCE OF COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2016,
  • [50] Automatic genre classification of TV programmes using Gaussian mixture models and neural networks
    Montagnuolo, Maurizio
    Messina, Alberto
    [J]. DEXA 2007: 18TH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2007, : 99 - +