mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models

被引:2
|
作者
Scrucca, Luca [1 ]
Fop, Michael [2 ]
Murphy, T. Brendan [2 ]
Raftery, Adrian E. [3 ]
机构
[1] Univ Perugia, Via A Pascoli 20, I-06123 Perugia, Italy
[2] Univ Coll Dublin, Dublin 4, Ireland
[3] Univ Washington, Box 354320, Seattle, WA 98195 USA
来源
R JOURNAL | 2016年 / 8卷 / 01期
基金
爱尔兰科学基金会;
关键词
DISCRIMINANT-ANALYSIS; R PACKAGE; LIKELIHOOD; COMPONENTS; NUMBER;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Finite mixture models are being used increasingly to model a wide variety of random phenomena for clustering, classification and density estimation. mclust is a powerful and popular package which allows modelling of data as a Gaussian finite mixture with different covariance structures and different numbers of mixture components, for a variety of purposes of analysis. Recently, version 5 of the package has been made available on CRAN. This updated version adds new covariance structures, dimension reduction capabilities for visualisation, model selection criteria, initialisation strategies for the EM algorithm, and bootstrap-based inference, making it a full-featured R package for data analysis via finite mixture modelling.
引用
收藏
页码:289 / 317
页数:29
相关论文
共 50 条
  • [1] Identifying connected components in Gaussian finite mixture models for clustering
    Scrucca, Luca
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 93 : 5 - 17
  • [2] Direct Log-Density Gradient Estimation with Gaussian Mixture Models and Its Application to Clustering
    Zhang, Qi
    Sasaki, Hiroaki
    Ikeda, Kazushi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (06) : 1154 - 1162
  • [3] Ensemble Gaussian mixture models for probability density estimation
    Michael Glodek
    Martin Schels
    Friedhelm Schwenker
    [J]. Computational Statistics, 2013, 28 : 127 - 138
  • [4] Ensemble Gaussian mixture models for probability density estimation
    Glodek, Michael
    Schels, Martin
    Schwenker, Friedhelm
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (01) : 127 - 138
  • [5] Quantization, classification, and density estimation for Kohonen's Gaussian mixture
    Gray, RM
    Perlmutter, KO
    Olshen, RA
    [J]. DCC '98 - DATA COMPRESSION CONFERENCE, 1998, : 63 - 72
  • [6] Empirical Bayes estimation utilizing finite Gaussian Mixture Models
    Orellana, Rafael
    Carvajal, Rodrigo
    Aguero, Juan C.
    [J]. 2019 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (CHILECON), 2019,
  • [7] Simultaneous estimation and clustering with finite mixture of nonparanormal graphical models
    Aghabozorgi, Hamid Haji
    Eskandari, Farzad
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [8] Estimation of Granger Causality of State-Space Models using a Clustering with Gaussian Mixture Model
    Plub-in, Nattaporn
    Songsiri, Jitkomut
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 3853 - 3858
  • [9] Classification and compression of ICEGS using gaussian mixture models
    Coggins, R
    Jabri, M
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING VII, 1997, : 226 - 235
  • [10] Using Wavelets and Gaussian Mixture Models for Audio Classification
    Chuan, Ching-Hua
    Vasana, Susan
    Asaithambi, Asai
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2012, : 421 - 426