Nonequilibrium quantum relaxation across a localization-delocalization transition

被引:32
|
作者
Roosz, Gergo [1 ,2 ]
Divakaran, Uma [3 ,4 ]
Rieger, Heiko [4 ]
Igloi, Ferenc [1 ,2 ]
机构
[1] Wigner Res Ctr, Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
[2] Univ Szeged, Inst Theoret Phys, H-6720 Szeged, Hungary
[3] Indian Inst Technol, Dept Phys, Kanpur 208016, Uttar Pradesh, India
[4] Univ Saarland, D-66041 Saarbrucken, Germany
关键词
BOSE-EINSTEIN CONDENSATE; TONKS-GIRARDEAU GAS; STATISTICAL-MECHANICS; XY-MODEL; COSMOLOGICAL EXPERIMENTS; PHASE-TRANSITION; WAVE-FUNCTIONS; SYSTEMS; DYNAMICS; CHAIN;
D O I
10.1103/PhysRevB.90.184202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the one-dimensional XX model in a quasiperiodic transverse field described by the Harper potential, which is equivalent to a tight-binding model of spinless fermions with a quasiperiodic chemical potential. For weak transverse field (chemical potential), h < h(c), the excitations (fermions) are delocalized, but become localized for h > h(c). We study the nonequilibrium relaxation of the system by applying two protocols: a sudden change of h (quench dynamics) and a slow change of h in time (adiabatic dynamics). For a quench into the delocalized (localized) phase, the entanglement entropy grows linearly (saturates) and the order parameter decreases exponentially (has a finite limiting value). For a critical quench the entropy increases algebraically with time, whereas the order parameter decreases with a stretched exponential. The density of defects after an adiabatic field change through the critical point is shown to scale with a power of the rate of field change and a scaling relation for the exponent is derived.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Numerical study of the localization-delocalization transition for vibrations in amorphous silicon
    Garber, W
    Tangerman, FM
    Allen, PB
    Feldman, JL
    PHILOSOPHICAL MAGAZINE LETTERS, 2001, 81 (06) : 433 - 439
  • [32] Dynamics of Entanglement in Optomechanical Cavity Arrays: Localization-Delocalization Transition
    Zeynab Faroughi
    Ali Ahanj
    Kurosh Javidan
    Samira Nazifkar
    International Journal of Theoretical Physics, 2021, 60 : 155 - 163
  • [33] Localization-Delocalization Transition of Indirect Excitons in Lateral Electrostatic Lattices
    Remeika, M.
    Graves, J. C.
    Hammack, A. T.
    Meyertholen, A. D.
    Fogler, M. M.
    Butov, L. V.
    Hanson, M.
    Gossard, A. C.
    PHYSICAL REVIEW LETTERS, 2009, 102 (18)
  • [34] Localization-delocalization transition of the instantaneous normal modes of liquid water
    Huang, Ban-Chiech
    Chang, Cheng-Hung
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [35] Localization-delocalization transition in non-Hermitian disordered systems
    Kolesnikov, AV
    Efetov, KB
    PHYSICAL REVIEW LETTERS, 2000, 84 (24) : 5600 - 5603
  • [36] Critical wetting and interface localization-delocalization transition in a double wedge
    Milchev, A
    Mülller, M
    Binder, K
    Landau, DP
    COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSCIS XVI, 2003, 95 : 113 - 119
  • [37] Distribution of level curvatures for the Anderson model at the localization-delocalization transition
    Canali, CM
    Basu, C
    Stephan, W
    Kravtsov, VE
    PHYSICAL REVIEW B, 1996, 54 (03): : 1431 - 1434
  • [38] LOCALIZATION-DELOCALIZATION TRANSITION FOR ONE-DIMENSIONAL ALLOY POTENTIALS
    LEVITOV, LS
    EUROPHYSICS LETTERS, 1988, 7 (04): : 343 - 348
  • [39] Dynamics of Entanglement in Optomechanical Cavity Arrays: Localization-Delocalization Transition
    Faroughi, Zeynab
    Ahanj, Ali
    Javidan, Kurosh
    Nazifkar, Samira
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (01) : 155 - 163
  • [40] Localization-delocalization transition in Hessian matrices of topologically disordered systems
    Huang, B. J.
    Wu, Ten-Ming
    PHYSICAL REVIEW E, 2009, 79 (04):