Nonequilibrium quantum relaxation across a localization-delocalization transition

被引:32
|
作者
Roosz, Gergo [1 ,2 ]
Divakaran, Uma [3 ,4 ]
Rieger, Heiko [4 ]
Igloi, Ferenc [1 ,2 ]
机构
[1] Wigner Res Ctr, Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
[2] Univ Szeged, Inst Theoret Phys, H-6720 Szeged, Hungary
[3] Indian Inst Technol, Dept Phys, Kanpur 208016, Uttar Pradesh, India
[4] Univ Saarland, D-66041 Saarbrucken, Germany
关键词
BOSE-EINSTEIN CONDENSATE; TONKS-GIRARDEAU GAS; STATISTICAL-MECHANICS; XY-MODEL; COSMOLOGICAL EXPERIMENTS; PHASE-TRANSITION; WAVE-FUNCTIONS; SYSTEMS; DYNAMICS; CHAIN;
D O I
10.1103/PhysRevB.90.184202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the one-dimensional XX model in a quasiperiodic transverse field described by the Harper potential, which is equivalent to a tight-binding model of spinless fermions with a quasiperiodic chemical potential. For weak transverse field (chemical potential), h < h(c), the excitations (fermions) are delocalized, but become localized for h > h(c). We study the nonequilibrium relaxation of the system by applying two protocols: a sudden change of h (quench dynamics) and a slow change of h in time (adiabatic dynamics). For a quench into the delocalized (localized) phase, the entanglement entropy grows linearly (saturates) and the order parameter decreases exponentially (has a finite limiting value). For a critical quench the entropy increases algebraically with time, whereas the order parameter decreases with a stretched exponential. The density of defects after an adiabatic field change through the critical point is shown to scale with a power of the rate of field change and a scaling relation for the exponent is derived.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Localization-delocalization transition in an electromagnetically induced photonic lattice
    Tian, Rui
    Li, Shuai
    Arzamasovs, Maksims
    Gao, Hong
    Zhang, Yong-Chang
    Liu, Bo
    PHYSICAL REVIEW A, 2023, 108 (04)
  • [22] Localization-delocalization transition in metal-dielectric films
    Genov, DA
    Sarychev, AK
    Shalaev, VM
    PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES II, 2004, 5512 : 20 - 27
  • [23] Localization-delocalization transition for drift diffusion in a random environment
    Bressloff, PC
    Dwyer, VM
    Kearney, MJ
    PHYSICAL REVIEW LETTERS, 1996, 77 (25) : 5075 - 5078
  • [24] Statistical properties of a localization-delocalization transition in one dimension
    Steiner, M
    Chen, Y
    Fabrizio, M
    Gogolin, AO
    PHYSICAL REVIEW B, 1999, 59 (23): : 14848 - 14851
  • [25] Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials
    Changming Huang
    Fangwei Ye
    Xianfeng Chen
    Yaroslav V. Kartashov
    Vladimir V. Konotop
    Lluis Torner
    Scientific Reports, 6
  • [26] Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model
    Mukherjee, Sudip
    Nag, Sabyasachi
    Garg, Arti
    PHYSICAL REVIEW B, 2018, 97 (14)
  • [27] PHASE TRANSITION OF LOCALIZATION-DELOCALIZATION TYPE IN ADSORPTION LAYER
    BERING, BP
    MUMINOV, SZ
    SERPINSK.VV
    DOKLADY AKADEMII NAUK SSSR, 1967, 172 (03): : 625 - &
  • [28] Numerical studies for localization-delocalization transition in vibrational spectra
    Huang, B. J.
    Wu, Ten-Ming
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (01) : 213 - 215
  • [29] Nonequilibrium delocalization-localization transition of photons in circuit quantum electrodynamics
    Schmidt, S.
    Gerace, D.
    Houck, A. A.
    Blatter, G.
    Tuereci, H. E.
    PHYSICAL REVIEW B, 2010, 82 (10):
  • [30] Localization-delocalization transition of electron states in a disordered quantum small-world network
    Zhu, CP
    Xiong, SJ
    PHYSICAL REVIEW B, 2000, 62 (22) : 14780 - 14783