ON TANGENT CONES IN WASSERSTEIN SPACE

被引:6
|
作者
Lott, John [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
METRIC-MEASURE-SPACES; GAUSS CURVATURE; TRANSPORT;
D O I
10.1090/proc/13415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If M is a smooth compact Riemannian manifold, let P(M) denote the Wasserstein space of probability measures on M. If S is an embedded submanifold of M, and mu is an absolutely continuous measure on S, then we compute the tangent cone of P(M) at mu.
引用
收藏
页码:3127 / 3136
页数:10
相关论文
共 50 条
  • [21] Tangent and Normal Cones to Real Surfaces
    Donal O’SHEA(Mathematics Department
    )Les WILSON (Mathematics Department
    )
    数学季刊, 1995, (04) : 62 - 71
  • [22] Tangent cones to tensor train varieties
    Kutschan, Benjamin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 544 : 370 - 390
  • [23] SOME PROPERTIES OF REAL TANGENT CONES
    KENDIG, KM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (07): : A819 - A819
  • [24] Tangent cones and regularity of real hypersurfaces
    Ghomi, Mohammad
    Howard, Ralph
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 697 : 221 - 247
  • [25] Subspace Clustering via Tangent Cones
    Jalali, Amin
    Willett, Rebecca
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [26] ON THE EQUATIONS DEFINING TANGENT-CONES
    ROBBIANO, L
    VALLA, G
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1980, 88 (SEP) : 281 - 297
  • [27] TANGENT-CONES AND DINI DERIVATIVES
    PAPPALARDO, M
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 70 (01) : 97 - 107
  • [28] On NURBS algorithms using tangent cones
    Selimovic, Ilijas
    COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (07) : 772 - 778
  • [29] SMOCKED METRIC SPACES AND THEIR TANGENT CONES
    Sormani, Christina
    Kazaras, Demetre
    Afrifa, David
    Antonetti, Victoria
    Dinowitz, Moshe
    Drillick, Hindy
    Farahzad, Maziar
    George, Shanell
    Hepburn, Aleah Lydeatte
    Huynh, Leslie Trang
    Minichiello, Emilio
    Pillati, Julinda Mujo
    Rendla, Srivishnupreeth
    Yamin, Ajmain
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2021, 33 (01) : 27 - 98
  • [30] On uniqueness of tangent cones for Einstein manifolds
    Tobias Holck Colding
    William P. Minicozzi
    Inventiones mathematicae, 2014, 196 : 515 - 588