EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A PERTURBATION OF CHOQUARD EQUATION WITH HARDY-LITTLEWOOD-SOBOLEV UPPER CRITICAL EXPONENT

被引:0
|
作者
Su, Yu [1 ,2 ]
Chen, Haibo [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830054, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy-Littlewood-Sobolev upper critical exponent; Choquard equation; SYMMETRIC-SOLUTIONS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the problem -Delta u = (integral(RN) vertical bar u vertical bar(2)*mu/vertical bar x-y vertical bar(mu) dy) vertical bar u vertical bar(2)mu*(-2)+ f(x, u) in R-N, where N >= 3, mu is an element of(0, N) and 2(mu)* = 2N-mu/N-2. Under suitable assumptions on f (x, u), we establish the existence and non-existence of nontrivial solutions via the variational method.
引用
收藏
页数:25
相关论文
共 50 条