Asymptotic Stability of Forced Equilibria for Distributed Port-Hamiltonian Systems

被引:0
|
作者
Macchelli, Alessandro [1 ]
机构
[1] Univ Bologna, Dept Elect Comp Sci & Syst DEIS, I-40136 Bologna, Italy
关键词
TIMOSHENKO BEAM; STABILIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main contribution of this paper is an energy shaping procedure for the stabilization of forced equilibria for linear, lossless, distributed port-Hamiltonian systems via Casimir generation. Once inputs and outputs have been properly chosen to have a well-posed boundary control system, conditions for the existence of Casimir functions in closed-loop are given, together with their relation with the controller structure. These invariants suggest how to select the controller Hamiltonian to introduce a minimum at the desired equilibrium. Such equilibrium can be made asymptotically stable via damping injection, if proper "pervasive" damping injection conditions are satisfied. The methodology is illustrated with the help of a Timoshenko beam with constant non-zero force applied at one side of the spatial domain, and full-actuation on the other one.
引用
收藏
页码:2934 / 2939
页数:6
相关论文
共 50 条
  • [41] Learning port-Hamiltonian Systems—Algorithms
    V. Salnikov
    A. Falaize
    D. Lozienko
    Computational Mathematics and Mathematical Physics, 2023, 63 : 126 - 134
  • [42] Discrete stochastic port-Hamiltonian systems
    Cordoni, Francesco Giuseppe
    Di Persio, Luca
    Muradore, Riccardo
    AUTOMATICA, 2022, 137
  • [43] Decomposition of Linear Port-Hamiltonian Systems
    Hoeffner, K.
    Guay, M.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3686 - 3691
  • [44] Notch filters for port-Hamiltonian systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 238 - 243
  • [45] Notch Filters for Port-Hamiltonian Systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2440 - 2445
  • [46] Reinforcement Learning for Port-Hamiltonian Systems
    Sprangers, Olivier
    Babuska, Robert
    Nageshrao, Subramanya P.
    Lopes, Gabriel A. D.
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (05) : 1003 - 1013
  • [47] Learnability of Linear Port-Hamiltonian Systems
    Ortega, Juan-Pablo
    Yin, Daiying
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 56
  • [48] Stability properties of some port-Hamiltonian SPDEs
    Kuchling, Peter
    Rudiger, Barbara
    Ugurcan, Baris
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2024,
  • [49] Stability via closure relations with applications to dissipative and port-Hamiltonian systems
    Glueck, Jochen
    Jacob, Birgit
    Meyer, Annika
    Wyss, Christian
    Zwart, Hans
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (03)
  • [50] STABILITY AND STABILIZATION OF INFINITE-DIMENSIONAL LINEAR PORT-HAMILTONIAN SYSTEMS
    Augner, Bjoern
    Jacob, Birgit
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2014, 3 (02): : 207 - 229