Modeling railroad trespassing crash frequency using a mixed-effects negative binomial model

被引:9
|
作者
Kang, Y. [1 ,2 ]
Iranitalab, A. [1 ,2 ]
Khattak, A. [1 ,2 ]
机构
[1] Univ Nebraska, Dept Civil Engn, Lincoln, NE 68588 USA
[2] Univ Nebraska, Nebraska Transportat Ctr, Lincoln, NE 68588 USA
关键词
Rail safety; trespassing; mixed-effects negative binomial; PREVENTION; FATALITIES; RAILWAYS; SUICIDE;
D O I
10.1080/23248378.2018.1550626
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
A better understanding of rail trespass crashes is needed as more than 400 trespassing related fatalities occur along rail tracks each year in the United States (U.S.). The objective of this research was to investigate factors associated with the occurrence of rail trespass crashes. Yearly crash frequency for counties in the U.S. with train tracks was modeled using a Mixed-effects Negative Binomial Model based on 2012-2016 datasets from the Federal Railroad Administration, the U.S. Census Bureau and National Historical Geographic Information System. Results revealed that key factors affecting rail trespassing crashes include county population density, length of rail tracks in a county, median age and male proportion of the county population, and average train traffic within a county. The findings provided useful information on improving public safety along railroad tracks.
引用
收藏
页码:208 / 218
页数:11
相关论文
共 50 条
  • [41] An Introduction to Linear Mixed-Effects Modeling in R
    Brown, Violet A.
    ADVANCES IN METHODS AND PRACTICES IN PSYCHOLOGICAL SCIENCE, 2021, 4 (01)
  • [42] Mixed-Effects Modeling with a Multinomial Dependent Variable
    Gudmestad, Aarnes
    Metzger, Thomas A.
    LANGUAGE LEARNING, 2025, 75 (01) : 212 - 249
  • [43] Linear Mixed-Effects Modeling by Parameter Cascading
    Cao, J.
    Ramsay, J. O.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 365 - 374
  • [44] Nonlinear mixed-effects modeling: Individualization and prediction
    Olofsen, E
    Dinges, DF
    Van Dongen, HPA
    AVIATION SPACE AND ENVIRONMENTAL MEDICINE, 2004, 75 (03): : A134 - A140
  • [45] Assessment of Crash Occurrence Using Historical Crash Data and a Random Effect Negative Binomial Model: A Case Study for a Rural State
    Diaz-Corro, Karla J.
    Moreno, Leyla Coronel
    Mitra, Suman
    Hernandez, Sarah
    TRANSPORTATION RESEARCH RECORD, 2021, 2675 (12) : 38 - 52
  • [46] Modeling dragonfly population data with a Bayesian bivariate geometric mixed-effects model
    van Oppen, Yulan B.
    Milder-Mulderij, Gabi
    Brochard, Christophe
    Wiggers, Rink
    de Vries, Saskia
    Krijnen, Wim P.
    Grzegorczyk, Marco A.
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (10) : 2171 - 2193
  • [47] A Mixed-Effects Model with Different Strategies for Modeling Volume in Cunninghamia lanceolata Plantations
    Mei Guangyi
    Sun Yujun
    Xu Hao
    Sergio de-Miguel
    PLOS ONE, 2015, 10 (10):
  • [48] Recovering Crossed Random Effects in Mixed-Effects Models Using Model Averaging
    Angel Martinez-Huertas, Jose
    Olmos, Ricardo
    METHODOLOGY-EUROPEAN JOURNAL OF RESEARCH METHODS FOR THE BEHAVIORAL AND SOCIAL SCIENCES, 2022, 18 (04) : 298 - 323
  • [49] A negative binomial crash sum model for time invariant heterogeneity in panel crash data: Some insights
    Mothafer, Ghasak I. M. A.
    Yamamoto, Toshiyuki
    Shankar, Venkataraman N.
    ANALYTIC METHODS IN ACCIDENT RESEARCH, 2017, 14 : 1 - 9
  • [50] Modeling normative kinetic perimetry isopters using mixed-effects quantile regression
    Patel, Dipesh E.
    Geraci, Marco
    Cortina-Borja, Mario
    JOURNAL OF VISION, 2016, 16 (06):