Mixed-Effects Modeling with a Multinomial Dependent Variable

被引:0
|
作者
Gudmestad, Aarnes [1 ]
Metzger, Thomas A. [2 ]
机构
[1] Virginia Polytech Inst & State Univ, Blacksburg, VA USA
[2] Ohio State Univ, Columbus, OH USA
关键词
mixed-effects model; regression; multinomial dependent variable; quantitative analyses; future-time reference; RANDOM EFFECTS SELECTION; LOGISTIC-REGRESSION; SPANISH; CLASSIFICATION; EXPRESSION; INFERENCE; FUTURE; ERROR; TESTS;
D O I
10.1111/lang.12667
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In this Methods Showcase Article, we illustrate mixed-effects modeling with a multinomial dependent variable as a means of explaining complexities in language. We model data on future-time reference in second language Spanish, which consists of a nominal dependent variable that has three levels, measured over 73 participants. We offer step-by-step procedures for multinomial logistic regression with fixed and random effects, and we discuss the interpretation of the model and its advantages and limitations. A one-page Accessible Summary of this article in nontechnical language is freely available in the Supporting Information online and at .
引用
收藏
页数:38
相关论文
共 50 条
  • [1] A mixed-effects multinomial logistic regression model
    Hedeker, D
    STATISTICS IN MEDICINE, 2003, 22 (09) : 1433 - 1446
  • [2] SEMIPARAMETRIC MULTINOMIAL MIXED-EFFECTS MODELS: A UNIVERSITY STUDENTS PROFILING TOOL
    Masci, Chiara
    Ieva, Francesca
    Paganoni, Anna Maria
    ANNALS OF APPLIED STATISTICS, 2022, 16 (03): : 1608 - 1632
  • [3] Mixed-Effects Modeling and Nonreductive Explanation
    Fang, Wei
    PHILOSOPHY OF SCIENCE, 2019, 86 (05) : 882 - 894
  • [4] Nonlinear Mixed-Effects Modeling Programs in R
    Stegmann, Gabriela
    Jacobucci, Ross
    Harring, Jeffrey R.
    Grimm, Kevin J.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (01) : 160 - 165
  • [5] Mixed-Effects Modeling of Optimisation Algorithm Performance
    Gagliolo, Matteo
    Legrand, Catherine
    Birattari, Mauro
    ENGINEERING STOCHASTIC LOCAL SEARCH ALGORITHMS: DESIGNING, IMPLEMENTING AND ANALYZING EFFECTIVE HEURISTICS, 2009, 5752 : 150 - +
  • [6] Nonlinear mixed-effects modeling of MNREAD data
    Cheung, Sing-Hang
    Kallie, Christopher S.
    Legge, Gordon E.
    Cheong, Allen M. Y.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2008, 49 (02) : 828 - 835
  • [7] New variable selection for linear mixed-effects models
    Wu, Ping
    Luo, Xinchao
    Xu, Peirong
    Zhu, Lixing
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2017, 69 (03) : 627 - 646
  • [8] An Introduction to Linear Mixed-Effects Modeling in R
    Brown, Violet A.
    ADVANCES IN METHODS AND PRACTICES IN PSYCHOLOGICAL SCIENCE, 2021, 4 (01)
  • [9] New variable selection for linear mixed-effects models
    Ping Wu
    Xinchao Luo
    Peirong Xu
    Lixing Zhu
    Annals of the Institute of Statistical Mathematics, 2017, 69 : 627 - 646
  • [10] Linear Mixed-Effects Modeling by Parameter Cascading
    Cao, J.
    Ramsay, J. O.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 365 - 374