A mean ergodic theorem of an amenable group action

被引:1
|
作者
Mohari, Anilesh [1 ]
机构
[1] Inst Math Sci, Chennai 600113, Tamil Nadu, India
关键词
Birkhoff; ergodic; Kadison-Schwarz; amenable group; ALGEBRAS; STATES;
D O I
10.1142/S0219025714500039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a sequence of weak Kadison-Schwarz maps T-n on a von-Neumann algebra M with a faithful normal state phi sub-invariant for each (T-n, n = 1) and use a duality argument to prove strong convergence of their pre-dual maps when their induced contractive maps (T-n, n = 1) on the GNS space of (M, phi) are strongly convergent. The result is applied to deduce improvements of some known ergodic theorems and Birkhoff's mean ergodic theorem for any locally compact second countable amenable group action on the pre-dual Banach space M-*.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A RENEWAL TYPE MEAN ERGODIC THEOREM
    KRENGEL, U
    ROTTGER, R
    WACKER, U
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 64 (02): : 269 - 274
  • [32] Generalized limits and a mean ergodic theorem
    Li, SY
    Shaw, SY
    [J]. STUDIA MATHEMATICA, 1996, 121 (03) : 207 - 219
  • [33] The Mean Ergodic Theorem in symmetric spaces
    Sukochev, Fedor
    Veksler, Aleksandr
    [J]. STUDIA MATHEMATICA, 2019, 245 (03) : 229 - 253
  • [34] A NOTE ON THE RANDOM MEAN ERGODIC THEOREM
    SALESKI, A
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 52 (01): : 41 - 44
  • [35] A QUANTITATIVE MULTIPARAMETER MEAN ERGODIC THEOREM
    Sipos, Andrei
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2021, 314 (01) : 209 - 218
  • [36] MEAN ERGODIC THEOREM IN REFLEXIVE SPACES
    PATIL, DJ
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 1977, 39 (1-2): : 135 - 138
  • [37] GENERALIZED SHANNON-MCMILLAN THEOREM FOR ACTION OF AN AMENABLE GROUP ON A PROBABILITY SPACE
    KIEFFER, JC
    [J]. ANNALS OF PROBABILITY, 1975, 3 (06): : 1031 - 1037
  • [38] On Effective Birkhoff’s Ergodic Theorem for Computable Actions of Amenable Groups
    Nikita Moriakov
    [J]. Theory of Computing Systems, 2018, 62 : 1269 - 1287
  • [39] A Banach space-valued ergodic theorem for amenable groups and applications
    Pogorzelski, Felix
    Schwarzenberger, Fabian
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2016, 130 : 19 - 69
  • [40] A Banach space-valued ergodic theorem for amenable groups and applications
    Felix Pogorzelski
    Fabian Schwarzenberger
    [J]. Journal d'Analyse Mathématique, 2016, 130 : 19 - 69