The Mean Ergodic Theorem in symmetric spaces

被引:2
|
作者
Sukochev, Fedor [1 ]
Veksler, Aleksandr [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Kensington, NSW 2052, Australia
[2] Uzbek Acad Sci, VI Romanovskiy Inst Math, Tashkent, Uzbekistan
关键词
mean ergodic theorem; symmetric spaces; singular functional; FUNCTIONALS;
D O I
10.4064/sm170311-31-10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the validity of the Mean Ergodic Theorem in a symmetric Banach function space E associated to an atomless Lebesgue probability space (Omega, nu). We show that the Mean Ergodic Theorem holds if and only if E is separable. That is, if T : Omega -> Omega is a measure preserving bijection then the Cesaro averages of {f o T-k}(k >= 0) converge in a symmetric Banach function space E for every f is an element of E if and only if E is separable. When E is non-separable the Cesaro averages may converge in E for some f is an element of E, but not all. It is also possible that every f is an element of E can have an equimeasurable copy whose Cesaro averages do converge in E. We demonstrate this using sufficient conditions intimately connected with the theory of singular traces.
引用
收藏
页码:229 / 253
页数:25
相关论文
共 50 条
  • [1] Mean ergodic theorem in symmetric spaces
    Sukochev, Fedor
    Veksler, Aleksandr
    [J]. COMPTES RENDUS MATHEMATIQUE, 2017, 355 (05) : 559 - 562
  • [2] A mean ergodic theorem on vector spaces
    Tam, PK
    Tan, KK
    [J]. APPLIED MATHEMATICS LETTERS, 1999, 12 (08) : 61 - 64
  • [3] MEAN ERGODIC THEOREM IN REFLEXIVE SPACES
    PATIL, DJ
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 1977, 39 (1-2): : 135 - 138
  • [4] LOCAL ERGODIC THEOREM IN SYMMETRIC-SPACES
    ZOTOV, IY
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1984, (04): : 67 - 69
  • [5] GENERALIZATION OF MEAN ERGODIC THEOREM IN BANACH SPACES
    JONES, L
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 27 (02): : 105 - 107
  • [6] A MEAN ERGODIC THEOREM IN BANACH-SPACES
    YOSHIMOTO, T
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (01) : 115 - 118
  • [7] Statistical Ergodic Theorem in Symmetric Spaces for Infinite Measures
    Veksler A.S.
    Chilin V.I.
    [J]. Journal of Mathematical Sciences, 2024, 278 (3) : 426 - 438
  • [8] A Mean Ergodic Theorem for Nonexpansive Mappings in Hadamard Spaces
    Khatibzadeh, H.
    Pouladi, H.
    [J]. ANALYSIS MATHEMATICA, 2021, 47 (02) : 329 - 342
  • [9] Mean Ergodic Theorems in Symmetric Spaces of Measurable Functions
    Muratov, M.
    Pashkova, Yu
    Rubshtein, B-Z
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (05) : 949 - 966
  • [10] Mean Ergodic Theorems in Symmetric Spaces of Measurable Functions
    M. Muratov
    Yu. Pashkova
    B.-Z. Rubshtein
    [J]. Lobachevskii Journal of Mathematics, 2021, 42 : 949 - 966