Mean ergodic theorem in symmetric spaces

被引:3
|
作者
Sukochev, Fedor [1 ]
Veksler, Aleksandr [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Kensington, NSW 2052, Australia
[2] Natl Univ Uzbekistan, Inst Math, Tashkent, Uzbekistan
关键词
D O I
10.1016/j.crma.2017.03.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the validity of the Mean Ergodic Theorem in symmetric Banach function spaces E. The assertion of that theorem always holds when E is separable, whereas the situation is more delicate when E is non-separable. To describe positive results in the latter setting, we use the connections with the theory of singular traces. (C) 2017 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:559 / 562
页数:4
相关论文
共 50 条
  • [1] The Mean Ergodic Theorem in symmetric spaces
    Sukochev, Fedor
    Veksler, Aleksandr
    [J]. STUDIA MATHEMATICA, 2019, 245 (03) : 229 - 253
  • [2] A mean ergodic theorem on vector spaces
    Tam, PK
    Tan, KK
    [J]. APPLIED MATHEMATICS LETTERS, 1999, 12 (08) : 61 - 64
  • [3] MEAN ERGODIC THEOREM IN REFLEXIVE SPACES
    PATIL, DJ
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 1977, 39 (1-2): : 135 - 138
  • [4] LOCAL ERGODIC THEOREM IN SYMMETRIC-SPACES
    ZOTOV, IY
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1984, (04): : 67 - 69
  • [5] GENERALIZATION OF MEAN ERGODIC THEOREM IN BANACH SPACES
    JONES, L
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 27 (02): : 105 - 107
  • [6] A MEAN ERGODIC THEOREM IN BANACH-SPACES
    YOSHIMOTO, T
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (01) : 115 - 118
  • [7] Statistical Ergodic Theorem in Symmetric Spaces for Infinite Measures
    Veksler A.S.
    Chilin V.I.
    [J]. Journal of Mathematical Sciences, 2024, 278 (3) : 426 - 438
  • [8] A Mean Ergodic Theorem for Nonexpansive Mappings in Hadamard Spaces
    Khatibzadeh, H.
    Pouladi, H.
    [J]. ANALYSIS MATHEMATICA, 2021, 47 (02) : 329 - 342
  • [9] Mean Ergodic Theorems in Symmetric Spaces of Measurable Functions
    Muratov, M.
    Pashkova, Yu
    Rubshtein, B-Z
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (05) : 949 - 966
  • [10] Mean Ergodic Theorems in Symmetric Spaces of Measurable Functions
    M. Muratov
    Yu. Pashkova
    B.-Z. Rubshtein
    [J]. Lobachevskii Journal of Mathematics, 2021, 42 : 949 - 966