Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation

被引:233
|
作者
Chaban, Yuriy [1 ]
Boekema, Egbert J. [1 ,2 ]
Dudkina, Natalya V. [1 ,2 ]
机构
[1] Univ London Birkbeck Coll, Inst Struct & Mol Biol, London WC1E 7HX, England
[2] Univ Groningen, Electron Microscopy Grp, Groningen Biomol Sci & Biotechnol Inst, NL-9747 AG Groningen, Netherlands
来源
关键词
Oxidative phosphorylation; Mitochondria; Supercomplex; ATP synthase; Electron microscopy; RESPIRATORY-CHAIN SUPERCOMPLEXES; CYTOCHROME-C-OXIDASE; DIMERIC ATP SYNTHASE; COMPLEX-I; SUPRAMOLECULAR ORGANIZATION; ELECTRON-TRANSPORT; CHLAMYDOMONAS-REINHARDTII; F1FO-ATP SYNTHASE; YEAST; PROTEIN;
D O I
10.1016/j.bbabio.2013.10.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oxidative phosphoiylation (OXPHOS) is the main source of energy in eukaryotic cells. This process is performed by means of electron flow between four enzymes, of which three are proton pumps, in the inner mitochondrial membrane. The energy accumulated in the proton gradient over the inner membrane is utilized for ATP synthesis by a fifth OXPHOS complex, ATP synthase. Four of the OXPHOS protein complexes associate into stable entities called respiratory supercomplexes. This review summarises the current view on the arrangement of the electron transport chain in mitochondrial cristae. The functional role of the supramolecular organisation of the OXPHOS system and the factors that stabilise such organisation are highlighted. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:418 / 426
页数:9
相关论文
共 50 条
  • [41] Respiratory active mitochondrial supercomplexes
    Enriquez, J. A.
    Acin-Perez, R.
    Fernande-Silva, P.
    Perez-Martos, A.
    FEBS JOURNAL, 2009, 276 : 36 - 36
  • [42] Adaptation within mitochondrial oxidative phosphorylation supercomplexes and membrane viscosity during degeneration of dopaminergic neurons in an animal model of early Parkinson's disease
    Kuter, Katarzyna
    Kratochwil, Manuela
    Berghauzen-Maciejewska, Klemencja
    Glowacka, Urszula
    Sugawa, Michiru D.
    Ossowska, Krystyna
    Dencher, Norbert A.
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2016, 1862 (04): : 741 - 753
  • [43] NEW SUPERCOMPLEXES OF THE OXIDATIVE PHOSPHORYLATION SYSTEM IN PEA (Pisum sativum L.) SEEDLINGS MITOCHONDRIA
    Kondakova, M. A.
    Ukolova, I. V.
    Borovskii, G. B.
    Voinikov, V. K.
    IZVESTIYA VUZOV-PRIKLADNAYA KHIMIYA I BIOTEKHNOLOGIYA, 2016, 6 (03): : 143 - 146
  • [45] MITOCHONDRIAL LOSS AND ADAPTIVE-MECHANISMS OF OXIDATIVE-PHOSPHORYLATION IN LIVER-CIRRHOSIS IN THE RAT
    KRAHENBUHL, S
    GEHR, P
    STUCKI, J
    REICHEN, J
    HEPATOLOGY, 1989, 10 (04) : 703 - 703
  • [46] Mechanisms of the effect of oxidative phosphorylation deficiencies on the skeletal muscle bioenergetic system in patients with mitochondrial myopathies
    Korzeniewski, Bernard
    JOURNAL OF APPLIED PHYSIOLOGY, 2021, 131 (02) : 768 - 777
  • [47] REGULATION OF MITOCHONDRIAL OXIDATIVE-PHOSPHORYLATION BY CHLOROPLASTS
    CHATURVEDI, VK
    KURUP, CKR
    CURRENT SCIENCE, 1985, 54 (12): : 550 - 553
  • [48] EFFECT OF ANGIOTENSIN ON MYOCARDIAL MITOCHONDRIAL OXIDATIVE PHOSPHORYLATION
    ALLMANN, DW
    GOODFRIE.T
    FEDERATION PROCEEDINGS, 1971, 30 (03) : 1285 - &
  • [49] NOVEL PROPERTY OF MITOCHONDRIAL OXIDATIVE-PHOSPHORYLATION
    WILSON, DF
    FAIRS, K
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1974, 56 (03) : 635 - 640
  • [50] MITOCHONDRIAL OXIDATIVE PHOSPHORYLATION OF NEOPLASTIC + NORMAL TISSUES
    GOLDFEDER, A
    MILLER, LA
    SELIG, JN
    JOURNAL OF CELL BIOLOGY, 1964, 23 (02): : A118 - &