Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation

被引:233
|
作者
Chaban, Yuriy [1 ]
Boekema, Egbert J. [1 ,2 ]
Dudkina, Natalya V. [1 ,2 ]
机构
[1] Univ London Birkbeck Coll, Inst Struct & Mol Biol, London WC1E 7HX, England
[2] Univ Groningen, Electron Microscopy Grp, Groningen Biomol Sci & Biotechnol Inst, NL-9747 AG Groningen, Netherlands
来源
关键词
Oxidative phosphorylation; Mitochondria; Supercomplex; ATP synthase; Electron microscopy; RESPIRATORY-CHAIN SUPERCOMPLEXES; CYTOCHROME-C-OXIDASE; DIMERIC ATP SYNTHASE; COMPLEX-I; SUPRAMOLECULAR ORGANIZATION; ELECTRON-TRANSPORT; CHLAMYDOMONAS-REINHARDTII; F1FO-ATP SYNTHASE; YEAST; PROTEIN;
D O I
10.1016/j.bbabio.2013.10.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oxidative phosphoiylation (OXPHOS) is the main source of energy in eukaryotic cells. This process is performed by means of electron flow between four enzymes, of which three are proton pumps, in the inner mitochondrial membrane. The energy accumulated in the proton gradient over the inner membrane is utilized for ATP synthesis by a fifth OXPHOS complex, ATP synthase. Four of the OXPHOS protein complexes associate into stable entities called respiratory supercomplexes. This review summarises the current view on the arrangement of the electron transport chain in mitochondrial cristae. The functional role of the supramolecular organisation of the OXPHOS system and the factors that stabilise such organisation are highlighted. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:418 / 426
页数:9
相关论文
共 50 条
  • [31] Regulation of mitochondrial oxidative phosphorylation by second messenger-mediated signal transduction mechanisms
    A. Boneh
    Cellular and Molecular Life Sciences CMLS, 2006, 63 : 1236 - 1248
  • [32] Mitochondrial Oxidative Phosphorylation in Viral Infections
    Purandare, Neeraja
    Ghosalkar, Esha
    Grossman, Lawrence I.
    Aras, Siddhesh
    VIRUSES-BASEL, 2023, 15 (12):
  • [33] PROTON TRANSPORT IN MITOCHONDRIAL OXIDATIVE PHOSPHORYLATION
    SELWYN, MJ
    DAWSON, AP
    BIOCHEMICAL JOURNAL, 1969, 114 (04) : P90 - &
  • [34] RESTORATION OF OXIDATIVE PHOSPHORYLATION IN MITOCHONDRIAL PREPARATIONS
    SMITH, AL
    WEBSTER, G
    HANSEN, M
    FEDERATION PROCEEDINGS, 1962, 21 (02) : 48 - &
  • [35] CONTROL OF MITOCHONDRIAL OXIDATIVE-PHOSPHORYLATION
    KHOLODENKO, BN
    JOURNAL OF THEORETICAL BIOLOGY, 1984, 107 (02) : 179 - 188
  • [36] RESTORATION OF OXIDATIVE PHOSPHORYLATION BY MITOCHONDRIAL EXTRACTS
    DIANZANI, MU
    BIOCHIMICA ET BIOPHYSICA ACTA, 1956, 22 (02) : 389 - 391
  • [37] Regulation of mitochondrial oxidative phosphorylation by second messenger-mediated signal transduction mechanisms
    Boneh, A.
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2006, 63 (11) : 1236 - 1248
  • [38] OXIDATIVE PHOSPHORYLATION WITH ENDOGENOUS MITOCHONDRIAL SUBSTRATES
    WEINBACH, EC
    ACTA CHEMICA SCANDINAVICA, 1960, 14 (08): : 1842 - 1843
  • [39] Structure and function of mitochondrial supercomplexes
    Dudkina, Natalya V.
    Kouril, Roman
    Peters, Katrin
    Braun, Hans-Peter
    Boekema, Egbert J.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2010, 1797 (6-7): : 664 - 670
  • [40] Respiratory Active Mitochondrial Supercomplexes
    Acin-Perez, Rebeca
    Fernandez-Silva, Patricio
    Luisa Peleato, Maria
    Perez-Martos, Acisclo
    Enriquez, Jose Antonio
    MOLECULAR CELL, 2008, 32 (04) : 529 - 539