RADICAL FORMULA AND WEAKLY PRIME SUBMODULES

被引:10
|
作者
Azizi, A. [1 ]
机构
[1] Shiraz Univ, Dept Math, Coll Sci, Shiraz 71454, Iran
关键词
RINGS;
D O I
10.1017/S0017089509005072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B be a submodule of an R-module M. The intersection of all prime (resp. weakly prime) submodules of M containing B is denoted by rad(B) (resp. wrad(B)). A generalisation of (E(B)) denoted by U E(B) of M will be introduced. The inclusions < E(B)> subset of U E(B) subset of wrad(B) subset of rad(B) are motivations for studying the equalities U E(B) = wrad(B) and U E(B) = rad(B) in this paper. It is proved that if R is an arithmetical ring, then U E(B) = wrad(B). In Theorem 2.5, a generalisation of the main result of [11] is given.
引用
收藏
页码:405 / 412
页数:8
相关论文
共 50 条
  • [31] ON GENERALIZATIONS OF PRIME SUBMODULES
    Ebrahimpour, M.
    Nekooei, R.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2013, 39 (05) : 919 - 939
  • [32] ON COMPLETELY PRIME SUBMODULES
    Ssevviiri, David
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2016, 19 : 77 - 90
  • [33] On chains of prime submodules
    Man, SH
    Smith, PF
    ISRAEL JOURNAL OF MATHEMATICS, 2002, 127 (1) : 131 - 155
  • [34] Unions of prime submodules
    Lu, CP
    HOUSTON JOURNAL OF MATHEMATICS, 1997, 23 (02): : 203 - 213
  • [35] STRONGLY PRIME SUBMODULES
    Naghipour, A. R.
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (07) : 2193 - 2199
  • [36] ON ALMOST PRIME SUBMODULES
    Khashan, Hani A.
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) : 645 - 651
  • [37] ON ALMOST PRIME SUBMODULES
    Hani A.Khashan
    Acta Mathematica Scientia, 2012, 32 (02) : 645 - 651
  • [38] Prime modules and submodules
    Tiras, Y
    Alkan, M
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (11) : 5253 - 5261
  • [39] A characterization of prime submodules
    Tiras, Y
    Harmanci, A
    Smith, PF
    JOURNAL OF ALGEBRA, 1999, 212 (02) : 743 - 752
  • [40] Generalizations of prime submodules
    Moradi, S.
    Azizi, A.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (03): : 587 - 595