RADICAL FORMULA AND WEAKLY PRIME SUBMODULES

被引:10
|
作者
Azizi, A. [1 ]
机构
[1] Shiraz Univ, Dept Math, Coll Sci, Shiraz 71454, Iran
关键词
RINGS;
D O I
10.1017/S0017089509005072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B be a submodule of an R-module M. The intersection of all prime (resp. weakly prime) submodules of M containing B is denoted by rad(B) (resp. wrad(B)). A generalisation of (E(B)) denoted by U E(B) of M will be introduced. The inclusions < E(B)> subset of U E(B) subset of wrad(B) subset of rad(B) are motivations for studying the equalities U E(B) = wrad(B) and U E(B) = rad(B) in this paper. It is proved that if R is an arithmetical ring, then U E(B) = wrad(B). In Theorem 2.5, a generalisation of the main result of [11] is given.
引用
收藏
页码:405 / 412
页数:8
相关论文
共 50 条
  • [21] PRIME SUBMODULES
    MCCASLAND, RL
    MOORE, ME
    COMMUNICATIONS IN ALGEBRA, 1992, 20 (06) : 1803 - 1817
  • [22] φ-PRIME SUBMODULES
    Zamani, Naser
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 253 - 259
  • [23] ON PRIME SUBMODULES
    Qiu, Yi
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2008, 11 (01): : 47 - 58
  • [24] ON β-PRIME SUBMODULES
    Khumprapussorn, Thawatchai
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2019, 25 (02) : 128 - 138
  • [25] On prime submodules
    Alkan, Mustafa
    Tiras, Yuecel
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (03) : 709 - 722
  • [26] Delta operation on modules, prime and radical submodules and primary decomposition
    Nikseresht, Ashkan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (04): : 1303 - 1314
  • [27] On Φ-powerful submodules and Φ-strongly prime submodules
    Khan, Waheed Ahmad
    Farid, Kiran
    Taouti, Abdelghani
    AIMS MATHEMATICS, 2021, 6 (10): : 11610 - 11619
  • [28] ON CHARACTERIZATIONS OF PRIME AND ALMOST PRIME SUBMODULES
    Steven
    Irawati
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (03): : 341 - 350
  • [29] WHEN PRIME SUBMODULES ARE PRIME IDEALS?
    Khalifa, Mohamed
    MATHEMATICAL REPORTS, 2023, 25 (01): : 167 - 177
  • [30] CHAIN OF PRIME SUBMODULES
    Askari, Bahman
    Adiban, Hadi
    Tavallaee, Hamid Agha
    MATHEMATICAL REPORTS, 2014, 16 (01): : 113 - 119