On the mirabolic Lie algebra

被引:0
|
作者
Kirillov, A. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 117901, Russia
[2] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
Lie groups; Lie algebras; representations;
D O I
10.1007/s10688-014-0055-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Lie algebra of (n + 1) x (n + 1) matrices with zeros in the last row. This algebra has received the name of mirabolic; it has many remarkable properties and plays an important role in representation theory. In this paper we study open coadjoint orbits for the corresponding Lie group P (n) .
引用
收藏
页码:145 / 149
页数:5
相关论文
共 50 条
  • [31] On the String Lie Algebra
    Salim Rivière
    Friedrich Wagemann
    Algebras and Representation Theory, 2015, 18 : 1071 - 1099
  • [32] Lie algebra fermions
    Troost, Jan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (42)
  • [33] ABELIANIZATIONS OF DERIVATION LIE ALGEBRAS OF THE FREE ASSOCIATIVE ALGEBRA AND THE FREE LIE ALGEBRA
    Morita, Shigeyuki
    Sakasai, Takuya
    Suzuki, Masaaki
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (05) : 965 - 1002
  • [34] The simple non-Lie Malcev algebra as a Lie-Yamaguti algebra
    Bremner, Murray R.
    Douglas, Andrew
    JOURNAL OF ALGEBRA, 2012, 358 : 269 - 291
  • [35] Post-Lie Algebra Structures on the Lie Algebra gl(2, C)
    Sheng, Yuqiu
    Tang, Xiaomin
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [36] A new Lie algebra along with its induced Lie algebra and associated with applications
    Feng, Binlu
    Liu, Jiaqi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) : 1734 - 1741
  • [37] Leibniz and Lie algebra structures for Nambu algebra
    Daletskii, YL
    Takhtajan, LA
    LETTERS IN MATHEMATICAL PHYSICS, 1997, 39 (02) : 127 - 141
  • [38] Computing the maximal algebra of quotients of a Lie algebra
    Bresar, Matej
    Perera, Francesc
    Sanchez Ortega, Juana
    Siles Molina, Mercedes
    FORUM MATHEMATICUM, 2009, 21 (04) : 601 - 620
  • [39] THE CENTRALIZER OF A LIE-ALGEBRA IN AN ENVELOPING ALGEBRA
    JOHNSON, KD
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 395 : 196 - 201
  • [40] Leibniz and Lie Algebra Structures for Nambu Algebra
    Yuri L. Daletskii
    Leon A. Takhtajan
    Letters in Mathematical Physics, 1997, 39 : 127 - 141