On the mirabolic Lie algebra

被引:0
|
作者
Kirillov, A. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 117901, Russia
[2] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
Lie groups; Lie algebras; representations;
D O I
10.1007/s10688-014-0055-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Lie algebra of (n + 1) x (n + 1) matrices with zeros in the last row. This algebra has received the name of mirabolic; it has many remarkable properties and plays an important role in representation theory. In this paper we study open coadjoint orbits for the corresponding Lie group P (n) .
引用
收藏
页码:145 / 149
页数:5
相关论文
共 50 条
  • [21] An Abelian Quotient of the Symplectic Derivation Lie Algebra of the Free Lie Algebra
    Morita, Shigeyuki
    Sakasai, Takuya
    Suzuki, Masaaki
    EXPERIMENTAL MATHEMATICS, 2018, 27 (03) : 302 - 315
  • [22] Hom-Lie group and hom-Lie algebra from Lie group and Lie algebra perspective
    Merati, S.
    Farhangdoost, M. R.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (05)
  • [23] On the Torelli Lie algebra
    Kupers, Alexander
    Randal-Williams, Oscar
    FORUM OF MATHEMATICS PI, 2023, 11
  • [24] On the String Lie Algebra
    Riviere, Salim
    Wagemann, Friedrich
    ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (04) : 1071 - 1099
  • [25] On the multiplier of a Lie algebra
    Yankosky, B
    JOURNAL OF LIE THEORY, 2003, 13 (01) : 1 - 6
  • [26] An atavistic Lie algebra
    Fairlie, DB
    Zachos, CK
    PHYSICS LETTERS B, 2006, 637 (1-2) : 123 - 127
  • [27] A GROUP OF A LIE ALGEBRA
    HEEREMA, N
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1970, 244 : 112 - &
  • [28] Lie algebra of transposition
    Marin, Ivan
    JOURNAL OF ALGEBRA, 2007, 310 (02) : 742 - 774
  • [29] ON THE RADICAL OF A LIE ALGEBRA
    HARISHCHANDRA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 1 (01) : 14 - 17
  • [30] ON LIE ALGEBRA ACTIONS
    Cushman, Richard H.
    Sniatycki, Jedrzej
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (04): : 1115 - 1129