Atomic layer deposition of alumina on γ-Al2O3 nanofibres

被引:5
|
作者
Jogiaas, Taivo [1 ]
Arroval, Tonis [1 ]
Kollo, Lauri [2 ]
Kozlova, Jekaterina [1 ]
Kaeaembre, Tanel [1 ]
Maendar, Hugo [1 ]
Tamm, Aile [1 ]
Hussainova, Irina [2 ]
Kukli, Kaupo [1 ,3 ]
机构
[1] Univ Tartu, Inst Phys, Dept Mat Sci, EE-51014 Tartu, Estonia
[2] Tallinn Univ Technol, Dept Mat Engn, EE-19086 Tallinn, Estonia
[3] Univ Helsinki, Dept Chem, Helsinki 00014, Finland
关键词
Al2O3; atomic layer deposition; indentation; nanocomposites; nanofibres; TEMPERATURE;
D O I
10.1002/pssa.201330083
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Atomic layer deposition (ALD) has been exploited for coating -alumina nanofibres with amorphous alumina, using trimethylaluminium Al(CH3)(3) (TMA) and water as precursors. The experiments were carried out at 150 or 300 degrees C, using 100 cycles (or an integer multiple of it) of ALD treatment. Heat-treatment was applied to the fibres to evaluate possible changes in ALD process development. Some samples were compacted and hardness was measured to preliminarily evaluate the effect of ALD and possible usage of fibres as raw material for hard ceramics. X-ray absorption spectroscopy, X-ray diffraction, scanning electron microscopy (SEM) and Vickers hardness test were used to characterize the fibres (with and without ALD coating). Alumina nanofibres can be considered as reinforcements in structural composites or as a material for inorganic membranes, suitable to applications at elevated temperatures.
引用
收藏
页码:403 / 408
页数:6
相关论文
共 50 条
  • [21] Thermal stability of atomic layer deposition Al2O3 thin films
    Lu Hong-Liang
    Xu Min
    Ding Shi-Jin
    Ren Jie
    Zhang Wei
    [J]. JOURNAL OF INORGANIC MATERIALS, 2006, 21 (05) : 1217 - 1222
  • [22] Nucleation and growth during Al2O3 atomic layer deposition on polymers
    Wilson, CA
    Grubbs, RK
    George, SM
    [J]. CHEMISTRY OF MATERIALS, 2005, 17 (23) : 5625 - 5634
  • [23] Properties of Al2O3 thin films grown by atomic layer deposition
    Froehlich, K.
    Micusik, M.
    Dobrocka, E.
    Siffalovic, P.
    Gucmann, F.
    Fedor, J.
    [J]. NINTH INTERNATIONAL CONFERENCE ON ADVANCED SEMICONDUCTOR DEVICES AND MICROSYSTEMS, 2012, : 171 - 174
  • [24] Al2O3 coating grown on Nafion membranes by atomic layer deposition
    Toikkanen, Outi
    Nisula, Mikko
    Pohjalainen, Elina
    Hietala, Sami
    Havansi, Hannele
    Ruotsalainen, Jussi
    Halttunen, Sakari
    Karppinen, Maarit
    Kallio, Tanja
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2015, 495 : 101 - 109
  • [25] Atomic layer deposition ZnO on porous Al2O3 nanofibers film
    Voronin, A. S.
    Masiygin, A. N.
    Molokeev, M. S.
    Khartov, S., V
    [J]. II INTERNATIONAL SCIENTIFIC CONFERENCE ON APPLIED PHYSICS, INFORMATION TECHNOLOGIES AND ENGINEERING 25, PTS 1-5, 2020, 1679
  • [26] Atomic layer deposition of Al2O3 on S-passivated Ge
    Sioncke, S.
    Ceuppens, J.
    Lin, D.
    Nyns, L.
    Delabie, A.
    Struyf, H.
    De Gendt, S.
    Mueller, M.
    Beckhoff, B.
    Caymax, M.
    [J]. MICROELECTRONIC ENGINEERING, 2011, 88 (07) : 1553 - 1556
  • [27] Annealing of Al2O3 thin films prepared by atomic layer deposition
    Zhang, L.
    Jiang, H. C.
    Liu, C.
    Dong, J. W.
    Chow, P.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (12) : 3707 - 3713
  • [28] Epitaxial graphene surface preparation for atomic layer deposition of Al2O3
    Garces, N. Y.
    Wheeler, V. D.
    Hite, J. K.
    Jernigan, G. G.
    Tedesco, J. L.
    Nepal, Neeraj
    Eddy, C. R., Jr.
    Gaskill, D. K.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (12)
  • [29] Growth of Titanium Oxide Nanostructures on γ-Al2O3 by Atomic Layer Deposition
    Malkov, A. A.
    Kukushkina, Yu. A.
    Sosnov, E. A.
    Malygin, A. A.
    [J]. INORGANIC MATERIALS, 2020, 56 (12) : 1234 - 1241
  • [30] PREPARATION OF AL2O3 COATED PVA AND PVP NANOFIBERS AND AL2O3 NANOTUBES BY ELECTROSPINNING AND ATOMIC LAYER DEPOSITION
    Keri, Orsolya
    Kocsis, Eszter
    Nagy, Zsombor Kristof
    Parditka, Bence
    Erdelyi, Zoltan
    Szilagyi, Imre Miklos
    [J]. REVUE ROUMAINE DE CHIMIE, 2018, 63 (5-6) : 401 - 406