Growth of Titanium Oxide Nanostructures on γ-Al2O3 by Atomic Layer Deposition

被引:4
|
作者
Malkov, A. A. [1 ]
Kukushkina, Yu. A. [2 ]
Sosnov, E. A. [1 ]
Malygin, A. A. [1 ]
机构
[1] Tech Univ, St Petersburg State Inst Technol, St Petersburg 190013, Russia
[2] Russian Acad Sci, Ioffe Physicotech Inst, St Petersburg 194021, Russia
关键词
core/shell materials; gamma-Al2O3; titanium oxide coatings; atomic layer deposition; surface; pore structure; TIO2; THIN-FILMS; PHOTOCATALYTIC ACTIVITY; DIOXIDE; TEMPERATURE; PARTICLES; TICL4;
D O I
10.1134/S0020168520120122
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents results on control over the surface composition, surface structure, and pore texture of core/shell materials, as exemplified by the growth of conformal titanium oxide nanocoatings on gamma-Al2O3 by atomic layer deposition via sequential and alternating exposure of the alumina to TiCl4 and H2O vapor. The alumina surface and growing titanium oxide layer are shown to influence the characteristics of the forming two-phase material. Increasing the amount of titanium via an increase in the number of deposition cycles leads to a systematic decrease in specific surface area, pore volume, and pore size, which points to conformal pore filling in the starting matrix by a titanium oxide layer. The composition and structure of the titanium oxide coating are influenced by its thickness and the nature of the starting matrix. The coordination state of the titanium oxide in monolayer structures is characteristic of the titanium oxide polyhedra in aluminum titanate. As the distance from the top monolayer to the surface of the matrix (coating thickness) increases, an X-ray amorphous layer is formed in which the oxygen coordination environment of the titanium is similar to that in an anatase-like phase of titanium dioxide.
引用
收藏
页码:1234 / 1241
页数:8
相关论文
共 50 条
  • [1] Growth of Titanium Oxide Nanostructures on γ-Аl2О3 by Atomic Layer Deposition
    A. A. Malkov
    Yu. A. Kukushkina
    E. A. Sosnov
    A. A. Malygin
    [J]. Inorganic Materials, 2020, 56 : 1234 - 1241
  • [2] Growth of Dielectric Al2O3 Films by Atomic Layer Deposition
    Ghiraldelli, Elisa
    Pelosi, Claudio
    Gombia, Enos
    Frigeri, Cesare
    Vanzetti, Lia
    Abdullayeva, Sevda
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (10) : 8174 - 8177
  • [3] Nucleation and growth during the atomic layer deposition of W on Al2O3 and Al2O3 on W
    Grubbs, RK
    Nelson, CE
    Steinmetz, NJ
    George, SM
    [J]. THIN SOLID FILMS, 2004, 467 (1-2) : 16 - 27
  • [4] Nucleation and growth during Al2O3 atomic layer deposition on polymers
    Wilson, CA
    Grubbs, RK
    George, SM
    [J]. CHEMISTRY OF MATERIALS, 2005, 17 (23) : 5625 - 5634
  • [5] Atomic layer deposition of alumina on γ-Al2O3 nanofibres
    Jogiaas, Taivo
    Arroval, Tonis
    Kollo, Lauri
    Kozlova, Jekaterina
    Kaeaembre, Tanel
    Maendar, Hugo
    Tamm, Aile
    Hussainova, Irina
    Kukli, Kaupo
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2014, 211 (02): : 403 - 408
  • [6] Atomic layer deposition of Al2O3 process emissions
    Ma, Lulu
    Pan, Dongqing
    Xie, Yuanyuan
    Yuan, Chris
    [J]. RSC ADVANCES, 2015, 5 (17) : 12824 - 12829
  • [7] Growth Behavior Evolution of Al2O3 Deposited on HOPG by Atomic Layer Deposition
    Nie Xianglong
    Ma Dayan
    Ma Fei
    Xu Kewei
    [J]. RARE METAL MATERIALS AND ENGINEERING, 2018, 47 (01) : 64 - 68
  • [8] Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-κ Al2O3 Dielectrics on Graphene
    杨航
    陈卫
    李铭洋
    熊峰
    王广
    张森
    邓楚芸
    彭刚
    秦石乔
    [J]. Chinese Physics Letters, 2020, (07) : 95 - 105
  • [9] Morphology of Al2O3 Film Fabricated by Atomic Layer Deposition
    Wang Chenying
    Yang Shuming
    Li Changsheng
    Jing Weixuan
    Lin Qijing
    Jiang Zhuangde
    Zhang Yijun
    [J]. RARE METAL MATERIALS AND ENGINEERING, 2015, 44 (12) : 3078 - 3082
  • [10] Atomic layer deposition of Al2O3 thin films on diamond
    Kawakami, N
    Yokota, Y
    Tachibana, T
    Hayashi, K
    Kobashi, K
    [J]. DIAMOND AND RELATED MATERIALS, 2005, 14 (11-12) : 2015 - 2018