Real time optical immunosensing with flow-through porous alumina membranes

被引:10
|
作者
Alvarez, Jesus [1 ]
Sola, Laura [2 ]
Cretich, Marina [2 ]
Swann, Marcus J. [3 ]
Gylfason, Kristinn B. [4 ]
Volden, Tormod [5 ]
Chiari, Marcella [2 ]
Hill, Daniel [1 ]
机构
[1] Univ Valencia, Inst Mat Sci, Unit Optoelect Mat & Devices, Valencia 46980, Spain
[2] CNR, Ist Chim Riconoscimento Mol, I-20146 Milan, Italy
[3] Farfield Grp Ltd, Biolin Sci, Manchester M22 5TG, Lancs, England
[4] KTH Royal Inst Technol, S-10044 Stockholm, Sweden
[5] Cent Switzerland Ctr, CSEM SA, CH-6055 Alpnach, Switzerland
关键词
Porous alumina; Form birefringence; Polarimetry; Optical biosensing; Copolymer; Quantum dots; BIOSENSORS; SERUM; IGE;
D O I
10.1016/j.snb.2014.06.027
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Through the presentation of analytical data from bioassay experiments, measured by polarimetry, we demonstrate for the first time a real time immunoassay within a free standing macroporous alumina membrane. The 200 nm nominal pore diameter of the membrane enables flow-through, thereby providing an ideal fluidic platform for the targeted delivery of analytes to bioreceptors immobilized on the pore walls, enabling fast sensing response times and the use of small sample volumes (<100 mu L). For the immunoassay, the pore walls were first coated with the functional copolymer, copoly(DMA-NAS) using a novel coupling process, before immobilization of the allergen protein, beta-lactoglobulin, by spotting. The immuno-assay then proceeded with the binding of the primary and secondary antibody cognates, rabbit anti-beta-lactoglobulin and anti-rabbit IgG respectively. Through the use of streptavidin coated quantum dots as refractive index signal enhancers, a noise floor for individual measurements of 3.7 ng/mL (25 pM) was obtained, with an overall statistical, or formal assay LOD of 33.7 ng/mL (225 pM), for total assay time below 1 h. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:834 / 839
页数:6
相关论文
共 50 条
  • [31] Internal mass transfer enhancement in flow-through catalytic membranes
    Lopes, J. P.
    Alves, M. A.
    Oliveira, M. S. N.
    Cardoso, S. S. S.
    Rodrigues, A. E.
    CHEMICAL ENGINEERING SCIENCE, 2013, 104 : 1090 - 1106
  • [32] STABILIZED BILAYER-LIPID MEMBRANES FOR FLOW-THROUGH EXPERIMENTS
    NIKOLELIS, DP
    SIONTOROU, CG
    ANDREOU, VG
    KRULL, UJ
    ELECTROANALYSIS, 1995, 7 (06) : 531 - 536
  • [33] Ion exchange of zeolite membranes by a vacuum 'flow-through' technique
    Kim, Seok-Jhin
    Jones, Christopher W.
    Nair, Sankar
    Liu, Yujun
    Moore, Jason S.
    Dixit, Ravindra S.
    Pendergast, John G., Jr.
    Sarsani, Sagar
    MICROPOROUS AND MESOPOROUS MATERIALS, 2015, 203 : 170 - 177
  • [34] Hybrid Polymer/Ultrathin Porous Nanocrystalline Silicon Membranes System for Flow-Through Chemical Vapor and Gas Detection
    Kavalenka, Maryna
    Fang, David
    Striemer, Christopher C.
    McGrath, James L.
    Fauchet, Philippe M.
    ACTIVE POLYMERS, 2009, 1190 : 199 - 204
  • [35] NONLINEAR SEEPAGE FLOW-THROUGH A RIGID POROUS-MEDIUM
    RASOLOARIJAONA, M
    AURIAULT, JL
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 1994, 13 (02) : 177 - 195
  • [36] MIXED-POTENTIAL DISTRIBUTION IN A POROUS FLOW-THROUGH ELECTRODE
    GOCHALIEV, GZ
    BORISOVA, SI
    SOVIET ELECTROCHEMISTRY, 1979, 15 (09): : 1172 - 1175
  • [38] MULTIPLE REACTION SEQUENCES IN FLOW-THROUGH POROUS-ELECTRODES
    ALKIRE, RC
    GOULD, RM
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1979, 126 (03) : C140 - C140
  • [39] EFFECT OF RADIAL DIFFUSION ON THE POLARIZATION AT POROUS FLOW-THROUGH ELECTRODES
    ATEYA, BG
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 1983, 13 (04) : 417 - 427
  • [40] Mathematical modeling of gas evolving flow-through porous electrodes
    Saleh, MM
    ELECTROCHIMICA ACTA, 1999, 45 (06) : 959 - 967