Real time optical immunosensing with flow-through porous alumina membranes

被引:10
|
作者
Alvarez, Jesus [1 ]
Sola, Laura [2 ]
Cretich, Marina [2 ]
Swann, Marcus J. [3 ]
Gylfason, Kristinn B. [4 ]
Volden, Tormod [5 ]
Chiari, Marcella [2 ]
Hill, Daniel [1 ]
机构
[1] Univ Valencia, Inst Mat Sci, Unit Optoelect Mat & Devices, Valencia 46980, Spain
[2] CNR, Ist Chim Riconoscimento Mol, I-20146 Milan, Italy
[3] Farfield Grp Ltd, Biolin Sci, Manchester M22 5TG, Lancs, England
[4] KTH Royal Inst Technol, S-10044 Stockholm, Sweden
[5] Cent Switzerland Ctr, CSEM SA, CH-6055 Alpnach, Switzerland
关键词
Porous alumina; Form birefringence; Polarimetry; Optical biosensing; Copolymer; Quantum dots; BIOSENSORS; SERUM; IGE;
D O I
10.1016/j.snb.2014.06.027
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Through the presentation of analytical data from bioassay experiments, measured by polarimetry, we demonstrate for the first time a real time immunoassay within a free standing macroporous alumina membrane. The 200 nm nominal pore diameter of the membrane enables flow-through, thereby providing an ideal fluidic platform for the targeted delivery of analytes to bioreceptors immobilized on the pore walls, enabling fast sensing response times and the use of small sample volumes (<100 mu L). For the immunoassay, the pore walls were first coated with the functional copolymer, copoly(DMA-NAS) using a novel coupling process, before immobilization of the allergen protein, beta-lactoglobulin, by spotting. The immuno-assay then proceeded with the binding of the primary and secondary antibody cognates, rabbit anti-beta-lactoglobulin and anti-rabbit IgG respectively. Through the use of streptavidin coated quantum dots as refractive index signal enhancers, a noise floor for individual measurements of 3.7 ng/mL (25 pM) was obtained, with an overall statistical, or formal assay LOD of 33.7 ng/mL (225 pM), for total assay time below 1 h. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:834 / 839
页数:6
相关论文
共 50 条
  • [21] POROUS FLOW-THROUGH RUBBLE-MOUND MATERIAL
    VANGENT, MRA
    JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING-ASCE, 1995, 121 (03): : 176 - 181
  • [22] ELECTROSORPTION OF ORGANICS ON FLOW-THROUGH POROUS-ELECTRODES
    ALKIRE, RC
    EISINGER, RS
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (03) : C72 - C72
  • [23] A microfluidic fuel cell with flow-through porous electrodes
    Kjeang, Erik
    Michel, Raphaelle
    Harrington, David A.
    Djilali, Ned
    Sinton, David
    Journal of the American Chemical Society, 2008, 130 (12): : 4000 - 4006
  • [24] A microfluidic fuel cell with flow-through porous electrodes
    Kjeang, Erik
    Michel, Raphaelle
    Harrington, David A.
    Djilali, Ned
    Sinton, David
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (12) : 4000 - 4006
  • [25] Copper Electrodeposition Dynamics at a Porous Flow-through Electrode
    A. I. Maslii
    A. Zh. Medvedev
    N. P. Poddubnyi
    Russian Journal of Electrochemistry, 2005, 41 : 1191 - 1196
  • [26] REAL-TIME MONITORING OF IMMUNOCHEMICAL INTERACTIONS WITH A TANTALUM CAPACITANCE FLOW-THROUGH CELL
    GEBBERT, A
    ALVAREZICAZA, M
    STOCKLEIN, W
    SCHMID, RD
    ANALYTICAL CHEMISTRY, 1992, 64 (09) : 997 - 1003
  • [27] AMPEROMETRIC OPERATION OF POROUS FLOW-THROUGH ELECTRODES IN FLOW STREAM DETECTORS
    CURRAN, DJ
    ZHU, C
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1988, 195 : 248 - ANYL
  • [28] MICROFLUIDIC FLOW-THROUGH REACTOR WITH ELECTROCHEMICAL SENSOR ARRAY FOR REAL-TIME PCR
    Huey-Fang, Teh
    Ramalingam, Naveen
    Hai-Qing, Gong
    Swee-Ngin, Tan
    MODERN PHYSICS LETTERS B, 2009, 23 (03): : 369 - 372
  • [29] Electrochemical sensor array for a microfluidic flow-through real-time quantitative PCR
    Fang, Teh Huey
    Haiqing, Gong
    Ramalingam, Naveen
    Ngin, Tan Swee
    PROCEEDINGS OF THE FIRST SHENYANG INTERNATIONAL COLLOQUIUM ON MICROFLUIDICS, 2007, : 167 - 170
  • [30] Characterization and manipulation of the electroosmotic flow in porous anodic alumina membranes
    Chen, W
    Yuan, JH
    Xia, XH
    ANALYTICAL CHEMISTRY, 2005, 77 (24) : 8102 - 8108