ON THE GENERALIZED CAYLEY GRAPHS OF POWER SET RINGS AND HAMILTONIAN CYCLES

被引:0
|
作者
Barani, Hamid Reza [1 ]
Khashyarmanesh, Kazem [1 ]
Rahbarnia, Freydoon [1 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, POB 1159-91775, Mashhad, Iran
关键词
Graph; Power set; Commutative ring; Hamiltonian; Clique number; ANNIHILATING-IDEAL GRAPHS; COMMUTATIVE RINGS; COMMUTING GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a non-empty set and R be the power set of X. Then (R, Delta, boolean AND) is a commutative ring with an identity element, where Delta is the symmetric difference. For a natural number n, Gamma(n)(R) is a graph with vertex set R-n\{0} and two distinct vertices Y and Z are adjacent if and only if there exists a lower triangular matrix A = [A(i)(j)](n x n) over R such that, for each i with 1 <= i <= n, A(ii) not equal 0(R) and also AY(T) = Z(T) or AZ(T) = Y-T, where, for a matrix B, B-T is the matrix transpose of B. In this paper we show that if vertical bar X vertical bar >= 2, for each natural number n, the graph Gamma(n)(R) has a Hamiltonian cycle except the case that vertical bar X vertical bar = 2 and n = 1. Also we investigate the clique number of Gamma(n)(R). Moreover we obtain a suitable bound for the independence number of Gamma(n)(R).
引用
收藏
页码:365 / 380
页数:16
相关论文
共 50 条
  • [31] HAMILTONIAN CYCLES IN GRAPHS
    LIU, ZH
    ZHU, YJ
    TIAN, F
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 367 - 376
  • [32] Isomorphisms of generalized Cayley graphs
    Yang, Xu
    Liu, Weijun
    Feng, Lihua
    ARS MATHEMATICA CONTEMPORANEA, 2018, 15 (02) : 407 - 424
  • [33] GENERALIZED CAYLEY-GRAPHS
    MARUSIC, D
    SCAPELLATO, R
    SALVI, NZ
    DISCRETE MATHEMATICS, 1992, 102 (03) : 279 - 285
  • [34] On the Diameter of Unitary Cayley Graphs of Rings
    Su, Huadong
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (03): : 652 - 660
  • [35] On the generalization of Cayley graphs of commutative rings
    Afkhami M.
    Hamidizadeh K.
    Khashyarmanesh K.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2017, 58 (2): : 395 - 404
  • [36] On unitary Cayley graphs of matrix rings
    Chen, Bocong
    Huang, Jing
    DISCRETE MATHEMATICS, 2022, 345 (01)
  • [37] Vertex-transitive generalized Cayley graphs which are not Cayley graphs
    Hujdurovic, Ademir
    Kutnar, Klavdija
    Marusic, Dragan
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 46 : 45 - 50
  • [38] On cycles in the sequence of unitary Cayley graphs
    Berrizbeitia, P
    Giudici, RE
    DISCRETE MATHEMATICS, 2004, 282 (1-3) : 239 - 243
  • [39] Hamilton cycles in Trivalent Cayley graphs
    Wagh, MD
    Mo, JC
    INFORMATION PROCESSING LETTERS, 1996, 60 (04) : 177 - 181
  • [40] Hamiltonian Fuzzy Cycles in Generalized Quartic Fuzzy Graphs with Girth k
    Jayalakshmi, N.
    Kumar, S. Vimal
    Thangaraj, P.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 1190 - 1202