ON THE GENERALIZED CAYLEY GRAPHS OF POWER SET RINGS AND HAMILTONIAN CYCLES

被引:0
|
作者
Barani, Hamid Reza [1 ]
Khashyarmanesh, Kazem [1 ]
Rahbarnia, Freydoon [1 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, POB 1159-91775, Mashhad, Iran
关键词
Graph; Power set; Commutative ring; Hamiltonian; Clique number; ANNIHILATING-IDEAL GRAPHS; COMMUTATIVE RINGS; COMMUTING GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a non-empty set and R be the power set of X. Then (R, Delta, boolean AND) is a commutative ring with an identity element, where Delta is the symmetric difference. For a natural number n, Gamma(n)(R) is a graph with vertex set R-n\{0} and two distinct vertices Y and Z are adjacent if and only if there exists a lower triangular matrix A = [A(i)(j)](n x n) over R such that, for each i with 1 <= i <= n, A(ii) not equal 0(R) and also AY(T) = Z(T) or AZ(T) = Y-T, where, for a matrix B, B-T is the matrix transpose of B. In this paper we show that if vertical bar X vertical bar >= 2, for each natural number n, the graph Gamma(n)(R) has a Hamiltonian cycle except the case that vertical bar X vertical bar = 2 and n = 1. Also we investigate the clique number of Gamma(n)(R). Moreover we obtain a suitable bound for the independence number of Gamma(n)(R).
引用
收藏
页码:365 / 380
页数:16
相关论文
共 50 条
  • [21] Hamiltonian paths in Cayley graphs
    Pak, Igor
    Radoicic, Rados
    DISCRETE MATHEMATICS, 2009, 309 (17) : 5501 - 5508
  • [22] Hamiltonian cycles in Cayley graphs whose order has few prime factors
    Kutnar, K.
    Marusic, D.
    Morris, D. W.
    Morris, J.
    Sparl, P.
    ARS MATHEMATICA CONTEMPORANEA, 2012, 5 (01) : 27 - 71
  • [23] INTERSECTION GRAPH OF GAMMA SETS IN GENERALIZED CAYLEY GRAPHS OF FINITE RINGS
    Chelvam, T. Tamizh
    Kathirvel, S. Anukumar
    Balamurugan, M.
    HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (03): : 561 - 582
  • [24] Cayley graphs of graded rings
    Mahmoudi, Saadoun
    Mehry, Shahram
    Safakish, Reza
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (06)
  • [25] LOWER BOUND ON THE NUMBER OF HAMILTONIAN CYCLES OF GENERALIZED PETERSEN GRAPHS
    Lu, Weihua
    Yang, Chao
    Ren, Han
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 297 - 305
  • [26] Hamiltonian cycles in cubic Cayley graphs: the (2, 4k, 3) case
    Glover, Henry H.
    Kutnar, Klavdija
    Marusic, Dragan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2009, 30 (04) : 447 - 475
  • [27] Hamiltonian cycles in cubic Cayley graphs: the 〈2,4k,3〉 case
    Henry H. Glover
    Klavdija Kutnar
    Dragan Marušič
    Journal of Algebraic Combinatorics, 2009, 30 : 447 - 475
  • [28] Almost all Cayley Graphs Are Hamiltonian
    Meng Jixiang Huang Qiongxiang Meng Jixiang Huang Qiongxiang Department of Mathematics and Institute of Mathematics and Phisics Xinjiang University Urumqi
    Acta Mathematica Sinica,English Series, 1996, (02) : 151 - 155
  • [29] Almost all Cayley Graphs Are Hamiltonian
    Meng Jixiang Huang Qiongxiang Meng Jixiang Huang Qiongxiang Department of Mathematics and Institute of Mathematics and Phisics Xinjiang University Urumqi China
    Acta Mathematica Sinica(New Series), 1996, 12 (02) : 151 - 155
  • [30] HAMILTONIAN CIRCUITS IN CAYLEY-GRAPHS
    MARUSIC, D
    DISCRETE MATHEMATICS, 1983, 46 (01) : 49 - 54