Deformable 3D Convolution for Video Super-Resolution

被引:91
|
作者
Ying, Xinyi [1 ]
Wang, Longguang [1 ]
Wang, Yingqian [1 ]
Sheng, Weidong [1 ]
An, Wei [1 ]
Guo, Yulan [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Three-dimensional displays; Motion compensation; Feature extraction; Image resolution; Signal resolution; Solid modeling; Video super-resolution; deformable convolution; ENHANCEMENT;
D O I
10.1109/LSP.2020.3013518
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The spatio-temporal information among video sequences is significant for video super-resolution (SR). However, the spatio-temporal information cannot be fully used by existing video SR methods since spatial feature extraction and temporal motion compensation are usually performed sequentially. In this paper, we propose a deformable 3D convolution network (D3Dnet) to incorporate spatio-temporal information from both spatial and temporal dimensions for video SR. Specifically, we introduce deformable 3D convolution (D3D) to integrate deformable convolution with 3D convolution, obtaining both superior spatio-temporal modeling capability and motion-aware modeling flexibility. Extensive experiments have demonstrated the effectiveness of D3D in exploiting spatio-temporal information. Comparative results show that our network achieves state-of-the-art SR performance. Code is available at: https://github.com/XinyiYing/D3Dnet.
引用
收藏
页码:1500 / 1504
页数:5
相关论文
共 50 条
  • [31] Remote Sensing Super-Resolution Reconstruction Based on Improved Deformable Convolution
    Yao, Fulin
    Li, Hongli
    Huang, Xun
    Sun, Kaiming
    Yi, Zhiqi
    2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE INNOVATION, ICAII 2023, 2023, : 100 - 104
  • [32] Super-Resolution 3D Tracking and Mapping
    Meilland, Maxime
    Comport, Andrew I.
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 5717 - 5723
  • [33] Texture Super-Resolution for 3D Reconstruction
    Burns, Calum
    Plyer, Aurelien
    Champagnat, Frederic
    PROCEEDINGS OF THE FIFTEENTH IAPR INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS - MVA2017, 2017, : 350 - 353
  • [34] Exploring the Relationship Between 2D/3D Convolution for Hyperspectral Image Super-Resolution
    Li, Qiang
    Wang, Qi
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (10): : 8693 - 8703
  • [35] Fast Online Video Super-Resolution with Deformable Attention Pyramid
    Fuoli, Dario
    Danelljan, Martin
    Timofte, Radu
    Van Gool, Luc
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 1735 - 1744
  • [36] Deformable Non-Local Network for Video Super-Resolution
    Wang, Hua
    Su, Dewei
    Liu, Chuangchuang
    Jin, Longcun
    Sun, Xianfang
    Peng, Xinyi
    IEEE ACCESS, 2019, 7 : 177734 - 177744
  • [37] Video Super-resolution by Generative Adversarial Network with 3D Convolutional Neural Networks
    Moriyama, Kohei
    Ono, Naoki
    Inoue, Kohei
    Hara, Kenji
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY, IWAIT 2023, 2023, 12592
  • [38] IMAGE SUPER-RESOLUTION USING DEFORMABLE CONVOLUTION GROUP FUSION FOR CANCER DIAGNOSIS
    Chen, Xiao
    Gao, Yang
    Jing, Ruyun
    JOURNAL OF INVESTIGATIVE MEDICINE, 2023, 71 : 19 - 19
  • [39] Super-resolution 3D live cell imaging
    Vogt, Nina
    NATURE METHODS, 2021, 18 (03) : 232 - 232
  • [40] 3D Super-Resolution Imaging of Unperturbed Cells
    Carr, Alexander R.
    McCol, James
    Santos, Ana M.
    Lee, Ji-Eun
    Ponjavic, Aleks
    Klenerman, Dave
    Davis, Simon
    Lee, Steven F.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 485A - 485A