Deformable 3D Convolution for Video Super-Resolution

被引:91
|
作者
Ying, Xinyi [1 ]
Wang, Longguang [1 ]
Wang, Yingqian [1 ]
Sheng, Weidong [1 ]
An, Wei [1 ]
Guo, Yulan [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Three-dimensional displays; Motion compensation; Feature extraction; Image resolution; Signal resolution; Solid modeling; Video super-resolution; deformable convolution; ENHANCEMENT;
D O I
10.1109/LSP.2020.3013518
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The spatio-temporal information among video sequences is significant for video super-resolution (SR). However, the spatio-temporal information cannot be fully used by existing video SR methods since spatial feature extraction and temporal motion compensation are usually performed sequentially. In this paper, we propose a deformable 3D convolution network (D3Dnet) to incorporate spatio-temporal information from both spatial and temporal dimensions for video SR. Specifically, we introduce deformable 3D convolution (D3D) to integrate deformable convolution with 3D convolution, obtaining both superior spatio-temporal modeling capability and motion-aware modeling flexibility. Extensive experiments have demonstrated the effectiveness of D3D in exploiting spatio-temporal information. Comparative results show that our network achieves state-of-the-art SR performance. Code is available at: https://github.com/XinyiYing/D3Dnet.
引用
收藏
页码:1500 / 1504
页数:5
相关论文
共 50 条
  • [21] Super-resolution for a 3D world
    Shaevitz, Joshua W.
    NATURE METHODS, 2008, 5 (06) : 471 - 472
  • [22] Super-resolution for a 3D world
    Joshua W Shaevitz
    Nature Methods, 2008, 5 : 471 - 472
  • [23] Depth Map Super-Resolution Using Guided Deformable Convolution
    Kim, Joon-Yeon
    Ji, Seowon
    Baek, Seung-Jin
    Jung, Seung-Won
    Ko, Sung-Jea
    IEEE ACCESS, 2021, 9 : 66626 - 66635
  • [24] Light Field Image Super-Resolution Using Deformable Convolution
    Wang, Yingqian
    Yang, Jungang
    Wang, Longguang
    Ying, Xinyi
    Wu, Tianhao
    An, Wei
    Guo, Yulan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1057 - 1071
  • [25] An Efficient Accelerator Based on Lightweight Deformable 3D-CNN for Video Super-Resolution
    Zhang, Siyu
    Mao, Wendong
    Wang, Zhongfeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2023, 70 (06) : 2384 - 2397
  • [26] Video Super-resolution via Convolution Neural Network
    Wei, Tsung-Hsin
    Chen, Ju-Chin
    2016 3RD INTERNATIONAL CONFERENCE ON GREEN TECHNOLOGY AND SUSTAINABLE DEVELOPMENT (GTSD), 2016, : 168 - 169
  • [27] Deformable mirror based optimal PSF engineering for 3D super-resolution imaging
    Fu, Shuang
    Li, Mengfan
    Zhou, Lulu
    He, Yingchuan
    Liu, Xin
    Hao, Xiang
    Li, Yiming
    OPTICS LETTERS, 2022, 47 (12) : 3031 - 3034
  • [28] Stereoscopic 3D from 2D video with super-resolution capability
    Knorr, Sebastian
    Kunter, Matthias
    Sikora, Thomas
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2008, 23 (09) : 665 - 676
  • [29] 3D VIDEO SUPER-RESOLUTION USING FULLY CONVOLUTIONAL NEURAL NETWORKS
    Xie, Yanchun
    Xiao, Jimin
    Tillo, Tammam
    Wei, Yunchao
    Zhao, Yao
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [30] Simultaneous super-resolution and 3D video using graph-cuts
    Tung, Tony
    Nobuhara, Shohei
    Matsuyama, Takashi
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 2814 - 2821