Lock-in thermal IR imaging using a solid immersion lens

被引:26
|
作者
Breitenstein, O.
Altmann, F.
Riediger, T.
Karg, D.
Gottschalk, V.
机构
[1] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany
[2] Fraunhofer Inst Mech Mat, D-06120 Halle, Germany
[3] Thermosensorik GmbH, D-91058 Erlangen, Germany
[4] ELMOS Semicond AG, D-44227 Dortmund, Germany
关键词
Infrared imaging;
D O I
10.1016/j.microrel.2006.07.027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A hemispherical silicon solid immersion lens (SIL) was used to improve the spatial resolution of front-side thermal IR imaging in lock-in mode. The bottom of the SIL was cone-shaped to reduce the footprint of the SIL to the size of the imaged region. Caused by the lock-in operation mode, the detection limit improves by 2-3 orders of magnitude, and scattered light does not limit the image contrast. By using this SIL in combination with an IR camera working in the 3-5 mu m wavelength range, a spatial resolution of 1.4 mu m was obtained for thermal IR imaging. An automatic SIL positioning facility was constructed to place the SIL exactly in the center of the imaged region and to easily remove it after the detailed investigation.
引用
收藏
页码:1508 / 1513
页数:6
相关论文
共 50 条
  • [41] Spherical aberration correction in aplanatic solid immersion lens imaging using a MEMS deformable mirror
    Lu, Y.
    Ramsay, E.
    Stockbridge, C. R.
    Yurt, A.
    Koeklue, F. H.
    Bifano, T. G.
    Uenlue, M. S.
    Goldberg, B. B.
    MICROELECTRONICS RELIABILITY, 2012, 52 (9-10) : 2120 - 2122
  • [42] Simultaneous measurements of the thermal diffusivity and conductivity of thermal insulators using lock-in infrared thermography
    Cifuentes, Angel
    Mendioroz, Arantza
    Salazar, Agustin
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2017, 121 : 305 - 312
  • [43] Broadband sub-wavelength terahertz subsurface imaging using a solid-immersion lens
    Choi, Da-Hye
    Kim, Mugeon
    Park, Dong Woo
    Lee, Eui Su
    Lee, Il-Min
    OPTICS AND LASER TECHNOLOGY, 2024, 174
  • [44] Subwavelength multichannel imaging using a solid immersion lens: Spectroscopy of excitons in single quantum dots
    Hewaparakrama, KP
    Wilson, A
    Mackowski, S
    Jackson, HE
    Smith, LM
    Karczewski, G
    Kossut, J
    APPLIED PHYSICS LETTERS, 2004, 85 (22) : 5463 - 5465
  • [45] Thermal diffusivity of metals determined by lock-in thermography
    Nolte, P. W.
    Malvisalo, T.
    Wagner, F.
    Schweizer, S.
    QUANTITATIVE INFRARED THERMOGRAPHY JOURNAL, 2017, 14 (02) : 218 - 225
  • [46] ANOMALOUS THERMAL HYSTERESIS AT THE LOCK-IN TRANSITIONS IN BCCD
    RIBEIRO, JL
    CHAVES, MR
    ALMEIDA, A
    MUSER, HE
    ALBERS, J
    KLOPPERPIEPER, A
    FERROELECTRICS, 1990, 105 : 369 - 372
  • [47] Lock-In Imaging with Synchronous Digital Mirror Demodulation
    Bush, Michael G.
    AIRBORNE INTELLIGENCE, SURVEILLANCE, RECONNAISSANCE (ISR) SYSTEMS AND APPLICATIONS VII, 2010, 7668
  • [48] Lock-in incoherent differential phase contrast imaging
    CHIARA BONATI
    DAMIEN LOTERIE
    TIMOTHé LAFOREST
    CHRISTOPHE MOSER
    Photonics Research, 2022, (01) : 237 - 247
  • [49] Lock-in incoherent differential phase contrast imaging
    Bonati, Chiara
    Loterie, Damien
    Laforest, Timothe
    Moser, Christophe
    PHOTONICS RESEARCH, 2022, 10 (01) : 237 - 247
  • [50] Lock-in optical instrumentation for snapshot hyperspectral imaging
    Brodie, C. Harrison
    Devasagayam, Jasen
    Collier, Christopher M.
    PHOTONIC INSTRUMENTATION ENGINEERING VII, 2020, 11287