On the Numerical Modeling of Terahertz Photoconductive Antennas

被引:18
|
作者
Moreno, E. [1 ]
Pantoja, M. F. [1 ]
Ruiz, F. G. [2 ]
Roldan, J. B. [2 ]
Garcia, S. G. [1 ]
机构
[1] Univ Granada, Dept Electromagnetismo & Fis Mat, E-18071 Granada, Spain
[2] Univ Granada, Dept Elect, E-18071 Granada, Spain
关键词
Photoconductive antennas; Terahertz sources; Semiconductor device modeling; GENERATION; SIMULATION; RADIATION; FIELD;
D O I
10.1007/s10762-014-0060-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper shows the relevance of mobility models to describe the carrier dynamics for the analysis of radiative semiconductor photoconductive devices in the terahertz regime. We have built a simulator that self-consistently solves the device physics and Maxwell's equations to study the radiated fields. In particular, we show a significant influence of an accurate description of the steady-state regime of the semiconductor device for calculating radiated electromagnetic fields in the broadside direction. Comparison with measurements shows the accuracy of our simulator and demonstrates the superior performance of numerical schemes based not only on the description of the carrier, electric potential, and field distributions, but also on reliable local mobility models.
引用
下载
收藏
页码:432 / 444
页数:13
相关论文
共 50 条
  • [31] Epitaxial stresses in an InGaAs photoconductive layer for terahertz antennas
    Khusyainov, D. I.
    Buryakov, A. M.
    Bilyk, V. R.
    Mishina, E. D.
    Ponomarev, D. S.
    Khabibullin, R. A.
    Yachmenev, A. E.
    TECHNICAL PHYSICS LETTERS, 2017, 43 (11) : 1020 - 1022
  • [32] Plasmonic Photoconductive Antennas for Significant Terahertz Radiation Enhancement
    Berry, C. W.
    Hashemi, M. R.
    Unlu, M.
    Jarrahi, M.
    2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2013, : 1132 - 1133
  • [33] Epitaxial stresses in an InGaAs photoconductive layer for terahertz antennas
    D. I. Khusyainov
    A. M. Buryakov
    V. R. Bilyk
    E. D. Mishina
    D. S. Ponomarev
    R. A. Khabibullin
    A. E. Yachmenev
    Technical Physics Letters, 2017, 43 : 1020 - 1022
  • [34] Generation and detection of ultrabroadband terahertz radiation with photoconductive antennas
    Tani, M
    Kono, S
    Nakajima, M
    Iida, M
    Sakai, K
    TWENTY SEVENTH INTERNATIONAL CONFERENCE ON INFRARED AND MILLIMETER WAVES, CONFERENCE DIGEST, 2002, : 125 - 126
  • [35] Multiphysics Modeling of THz Photoconductive Antennas
    Burford, Nathan M.
    El-Shenawee, Magda
    2014 39TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2014,
  • [36] Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices
    Page, H.
    Malik, S.
    Evans, M.
    Gregory, I.
    Farrer, I.
    Ritchie, D.
    APPLIED PHYSICS LETTERS, 2008, 92 (16)
  • [37] Characterization and modeling of a terahertz photoconductive switch
    Suen, J. Y.
    Li, W.
    Taylor, Z. D.
    Brown, E. R.
    APPLIED PHYSICS LETTERS, 2010, 96 (14)
  • [38] Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas
    Emadi, R.
    Barani, N.
    Safian, R.
    Nezhad, A. Zeidaabadi
    JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2016, 37 (11) : 1069 - 1085
  • [39] Plasmonic Photoconductive Antennas for Terahertz Pulsed Spectroscopy and Imaging Systems
    D. V. Lavrukhin
    R. R. Galiev
    A. Yu. Pavlov
    A. E. Yachmenev
    M. V. Maytama
    I. A. Glinskiy
    R. A. Khabibullin
    Yu. G. Goncharov
    K. I. Zaytsev
    D. S. Ponomarev
    Optics and Spectroscopy, 2019, 126 : 580 - 586
  • [40] Improvement of terahertz photoconductive antennas array using crossfingers structure
    Farzad Moradiannejad
    Journal of Computational Electronics, 2021, 20 : 922 - 927