Ostrowski type inequalities for k-β-convex functions via Riemann-Liouville k-fractional integrals

被引:0
|
作者
Lakhal, Fahim [1 ]
机构
[1] Univ 8 Mai 1945, Dept Math, POB 401, Guelma 24000, Algeria
关键词
Ostrowski inequality; Holder inequality; Power mean inequality; k-beta-Convex function; Riemann-Liouville k-Fractional integrals;
D O I
10.1007/s12215-020-00571-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new concept k-beta-convex functions and establish some new Ostrowski's inequalities for functions whose derivative modulus is k-beta-convex via Riemann-Liouville k-fractional integrals.
引用
收藏
页码:1561 / 1578
页数:18
相关论文
共 50 条
  • [31] HERMITE-HADAMARD TYPE INEQUALITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS VIA STRONGLY h-CONVEX FUNCTIONS
    Xing, Yi
    Jiang, Chaoqun
    Ruan, Jianmiao
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (04): : 1309 - 1332
  • [32] Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions
    Rashid, Saima
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Chu, Yu-Ming
    [J]. AIMS MATHEMATICS, 2020, 5 (03): : 2629 - 2645
  • [33] INEQUALITIES FOR CO-ORDINATED M-CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Yildiz, Cetin
    Tunc, Mevlut
    Kavurmaci, Havva
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2014, 5 (01): : 45 - 55
  • [34] A NOTE ON HERMITE-HADAMARD INEQUALITIES FOR PRODUCTS OF CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Chen, Feixiang
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 299 - 306
  • [35] On the Hermite-Hadamard type inequality for ψ-Riemann-Liouville fractional integrals via convex functions
    Liu, Kui
    Wang, JinRong
    O'Regan, Donal
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [36] k-FRACTIONAL INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX FUNCTIONS VIA CAPUTO k-FRACTIONAL DERIVATIVES
    Waheed, Asif
    Farid, Ghulam
    Rehman, Atiq Ur
    Ayub, Waqas
    [J]. BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 10 (01): : 55 - 67
  • [37] AN EXTENSION BY MEANS OF ω-WEIGHTED CLASSES OF THE GENERALIZED RIEMANN-LIOUVILLE k-FRACTIONAL INTEGRAL INEQUALITIES
    Agarwal, P.
    Restrepo, J. E.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (01): : 35 - 46
  • [38] General (k, p)-Riemann-Liouville fractional integrals
    Benaissa, Bouharket
    Budak, Huseyin
    [J]. FILOMAT, 2024, 38 (08) : 2579 - 2586
  • [39] Riemann-Liouville Fractional Newton's Type Inequalities for Differentiable Convex Functions
    Sitthiwirattham, Thanin
    Nonlaopon, Kamsing
    Ali, Muhammad Aamir
    Budak, Huseyin
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [40] Montgomery Identity and Ostrowski Type Inequalities for Riemann-Liouville Fractional Integral
    Aljinovic, Andrea Aglic
    [J]. JOURNAL OF MATHEMATICS, 2014, 2014