HERMITE-HADAMARD TYPE INEQUALITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS VIA STRONGLY h-CONVEX FUNCTIONS

被引:2
|
作者
Xing, Yi [1 ]
Jiang, Chaoqun [1 ]
Ruan, Jianmiao [1 ]
机构
[1] Zhejiang Int Studies Univ, Dept Math, Hangzhou 310014, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2022年 / 16卷 / 04期
基金
中国国家自然科学基金;
关键词
Hermite-Hadamard type inequalities; strongly h-convex functions; Riemann-Liouville fractional integrals; DIFFERENTIABLE MAPPINGS; REAL NUMBERS; SETS;
D O I
10.7153/jmi-2022-16-87
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Hermite-Hadamard type inequalitis for Riemann-Liouville fractional integrals via strongly h-convex functions are established. Furthermore, we obtain some identi-ties related to the fractional integrals with n-times differentiable functions, and then gain mid-point type and trapezoid type error estimates connected with the Hermite-Hadamard type in-equalities, which generalize some known results.
引用
收藏
页码:1309 / 1332
页数:24
相关论文
共 50 条
  • [1] Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of h-convex functions
    Dragomir, Silvestru Sever
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) : 2364 - 2380
  • [2] Hermite-Hadamard Type Inequalities for s-Convex Functions via Riemann-Liouville Fractional Integrals
    Wang, Shu-Hong
    Qi, Feng
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (06) : 1124 - 1134
  • [3] HERMITE-HADAMARD TYPE INEQUALITIES FOR PRODUCT OF HARMONICALLY CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Kunt, Mehmet
    Iscan, Imdat
    Yazici, Nazli
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 7 (04): : 74 - 82
  • [4] On the Hermite-Hadamard type inequality for ψ-Riemann-Liouville fractional integrals via convex functions
    Liu, Kui
    Wang, JinRong
    O'Regan, Donal
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [5] A NOTE ON HERMITE-HADAMARD INEQUALITIES FOR PRODUCTS OF CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Chen, Feixiang
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 299 - 306
  • [6] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Sarikaya, Mehmet Zeki
    Yildirim, Huseyin
    [J]. MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 1049 - 1059
  • [7] On Hermite-Hadamard Type Inequalities for s-Convex Functions on the Coordinates via Riemann-Liouville Fractional Integrals
    Chen, Feixiang
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [8] THE LEFT RIEMANN-LIOUVILLE FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS
    Kunt, Mehmet
    Karapinar, Dunya
    Turhan, Sercan
    Iscan, Imdat
    [J]. MATHEMATICA SLOVACA, 2019, 69 (04) : 773 - 784
  • [9] Hermite-Hadamard Type Riemann-Liouville Fractional Integral Inequalities for Convex Functions
    Tomar, Muharrem
    Set, Erhan
    Sarikaya, M. Zeki
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [10] Hermite-Hadamard Type Inequalities for h-Convex Functions Via Generalized Fractional Integrals
    Ali, M. Aamir
    Budak, H.
    Abbas, M.
    Sarikaya, M. Z.
    Kashuri, A.
    [J]. JOURNAL OF MATHEMATICAL EXTENSION, 2020, 14 (04) : 187 - 234