On non-monotonic fuzzy measures of Phi-bounded variation

被引:0
|
作者
Jang, LC [1 ]
Kwon, JS [1 ]
机构
[1] SUN MOON UNIV, DEPT MATH, ANSANKUM 337840, SOUTH KOREA
关键词
non-monotonic fuzzy measures; total Phi-variations; Phi-bounded variations; a convex function; Banach spaces;
D O I
10.1016/0165-0114(95)00368-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper discuss some properties of non-monotonic fuzzy measures of Phi-bounded variation. We show that there is an example of Phi such that BV(X,F) is a proper subspace of Phi BV(X,F). And also, we prove that Phi BV(X,F) is a real Banach space. Furthermore, we investigated some properties of non-monotonic fuzzy Phi-measures.
引用
收藏
页码:101 / 106
页数:6
相关论文
共 50 条
  • [31] Non-monotonic lattice parameter variation in ball-milled ceria
    Banerjee, Amitava
    Gupta, Rajeev
    Balani, Kantesh
    JOURNAL OF MATERIALS SCIENCE, 2015, 50 (19) : 6349 - 6358
  • [32] Non-monotonic lattice parameter variation with crystallite size in nanocrystalline solids
    Rane, Gayatri Koyar
    Welzel, Udo
    Meka, Sai Ramudu
    Mittemeijer, Eric Jan
    ACTA MATERIALIA, 2013, 61 (12) : 4524 - 4533
  • [33] Non-Monotonic Variation of Acoustic Spectrum with the Mass or Thickness of a Layered Structure
    Cojocaru, Sergiu
    ACOUSTICS, 2024, 6 (04): : 805 - 817
  • [34] Non-monotonic lattice parameter variation in ball-milled ceria
    Amitava Banerjee
    Rajeev Gupta
    Kantesh Balani
    Journal of Materials Science, 2015, 50 : 6349 - 6358
  • [35] Non-monotonic variation of the exchange energy in double elliptic quantum dots
    Zhang, L-X
    Melnikov, D. V.
    Leburton, J-P
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (09)
  • [36] Non-monotonic Collective Decisions
    Cristani, Matteo
    Olivieri, Francesco
    Governatori, Guido
    PRINCIPLES AND PRACTICE OF MULTI-AGENT SYSTEMS (PRIMA 2019), 2019, 11873 : 387 - 404
  • [37] Non-monotonic variation of viscous dissipation in confined liquid films: A reconciliation
    de Beer, S.
    den Otter, W. K.
    van den Ende, D.
    Briels, W. J.
    Mugele, F.
    EPL, 2012, 97 (04)
  • [38] NON-MONOTONIC VARIATION OF THE QUANTUM DEFECT IN CS NDJ TERM SERIES
    LORENZEN, CJ
    NIEMAX, K
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1983, 311 (03): : 249 - 250
  • [39] COMPLEXITY OF NON-MONOTONIC LOGICS
    Toran, Jacob
    Thomas, Michael
    Vollmer, Heribert
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2010, (102): : 53 - 82
  • [40] The Non-Monotonic NonFregean Logic
    Wojtowicz, Anna
    FILOZOFIA NAUKI, 2011, 19 (02): : 105 - +