On non-monotonic fuzzy measures of Phi-bounded variation

被引:0
|
作者
Jang, LC [1 ]
Kwon, JS [1 ]
机构
[1] SUN MOON UNIV, DEPT MATH, ANSANKUM 337840, SOUTH KOREA
关键词
non-monotonic fuzzy measures; total Phi-variations; Phi-bounded variations; a convex function; Banach spaces;
D O I
10.1016/0165-0114(95)00368-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper discuss some properties of non-monotonic fuzzy measures of Phi-bounded variation. We show that there is an example of Phi such that BV(X,F) is a proper subspace of Phi BV(X,F). And also, we prove that Phi BV(X,F) is a real Banach space. Furthermore, we investigated some properties of non-monotonic fuzzy Phi-measures.
引用
收藏
页码:101 / 106
页数:6
相关论文
共 50 条
  • [21] Dissipation in monotonic and non-monotonic relaxation to equilibrium
    Petersen, Charlotte F.
    Evans, Denis J.
    Williams, Stephen R.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (07):
  • [22] Rough sets in the neuro-fuzzy architectures based on non-monotonic fuzzy implications
    Nowicki, R
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2004, 2004, 3070 : 518 - 525
  • [23] Rule base compression in fuzzy systems by filtration of non-monotonic rules
    Gegov, Alexander
    Gobalakrishnan, Neelamugilan
    Sanders, David
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (04) : 2029 - 2043
  • [24] Examining the modelling capabilities of defeasible argumentation and non-monotonic fuzzy reasoning
    Longo, Luca
    Rizzo, Lucas
    Dondio, Pierpaolo
    KNOWLEDGE-BASED SYSTEMS, 2021, 211
  • [25] Using gradual numbers to analyze non-monotonic functions of fuzzy intervals
    Untiedt, Elizabeth
    Lodwick, Weldon
    2008 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1 AND 2, 2008, : 590 - 595
  • [26] Correct non-monotonic ATMS
    1600, Morgan Kaufmann Publ Inc, San Mateo, CA, USA (02):
  • [27] Non-monotonic Explanation Functions
    Amgoud, Leila
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2021, 2021, 12897 : 19 - 31
  • [28] THE MATHEMATICS OF NON-MONOTONIC REASONING
    DAVIS, M
    ARTIFICIAL INTELLIGENCE, 1980, 13 (1-2) : 73 - 80
  • [29] A logic of non-monotonic interactions
    Boniolo, Giovanni
    D'Agostino, Marcello
    Piazza, Mario
    Pulcini, Gabriele
    JOURNAL OF APPLIED LOGIC, 2013, 11 (01) : 52 - 62
  • [30] On the intertranslatability of non-monotonic logics
    Janhunen, T
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 1999, 27 (1-4) : 79 - 128