Beta kernel smoothers for regression curves

被引:1
|
作者
Chen, SX [1 ]
机构
[1] La Trobe Univ, Dept Stat Sci, Bundoora, Vic 3083, Australia
关键词
beta kernels; boundary bias; local linear regression; mean integrated square error; nonparametric regression;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes beta kernel smoothers for estimating curves with compact support by employing a beta family of densities as kernels. These beta kernel smoothers are free of boundary bias, achieve the optimal convergence rate of n(-4/5) for mean integrated squared error and always allocate non-negative weights. In the context of regression, a comparison is made between one of the beta smoothers and the local linear smoother. Its mean integrated squared error is comparable with that of the local linear smoother. Situations where the beta kernel smoother has a smaller mean integrated squared error are given. Extensions to probability density estimation are discussed.
引用
收藏
页码:73 / 91
页数:19
相关论文
共 50 条
  • [41] Asymmetric kernel regression
    Mackenzie, M
    Tieu, AK
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (02): : 276 - 282
  • [42] Kernel spline regression
    Braun, WJ
    Huang, LS
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (02): : 259 - 278
  • [43] Kernel continuum regression
    Lee, Myung Hee
    Liu, Yufeng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 68 : 190 - 201
  • [44] Koopman Kernel Regression
    Bevanda, Petar
    Beier, Max
    Lederer, Armin
    Sosnowski, Stefan
    Huellermeier, Eyke
    Hirche, Sandra
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [45] Coresets for Kernel Regression
    Zheng, Yan
    Phillips, Jeff M.
    [J]. KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 645 - 654
  • [46] Kernel regression with ''no'' information
    Linton, O
    [J]. ECONOMETRIC THEORY, 1997, 13 (03) : 464 - 465
  • [47] Second-Moment/Order Approximations by Kernel Smoothers with Application to Volatility Estimation
    Belena, Leon
    Curbelo, Ernesto
    Martino, Luca
    Laparra, Valero
    [J]. MATHEMATICS, 2024, 12 (09)
  • [48] Swap Kernel Regression
    Yamamoto, Masaharu
    Yamauchi, Koichiro
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: THEORETICAL NEURAL COMPUTATION, PT I, 2019, 11727 : 223 - 238
  • [49] Interval kernel regression
    Fagundes, Roberta A. A.
    de Souza, Renata M. C. R.
    Cysneiros, Francisco Jose A.
    [J]. NEUROCOMPUTING, 2014, 128 : 371 - 388
  • [50] On boosting kernel regression
    Di Marzio, Marco
    Taylor, Charles C.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (08) : 2483 - 2498