Beta kernel smoothers for regression curves

被引:1
|
作者
Chen, SX [1 ]
机构
[1] La Trobe Univ, Dept Stat Sci, Bundoora, Vic 3083, Australia
关键词
beta kernels; boundary bias; local linear regression; mean integrated square error; nonparametric regression;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes beta kernel smoothers for estimating curves with compact support by employing a beta family of densities as kernels. These beta kernel smoothers are free of boundary bias, achieve the optimal convergence rate of n(-4/5) for mean integrated squared error and always allocate non-negative weights. In the context of regression, a comparison is made between one of the beta smoothers and the local linear smoother. Its mean integrated squared error is comparable with that of the local linear smoother. Situations where the beta kernel smoother has a smaller mean integrated squared error are given. Extensions to probability density estimation are discussed.
引用
收藏
页码:73 / 91
页数:19
相关论文
共 50 条
  • [31] Using local correlation in kernel-based smoothers for dependent data
    Peterson, DR
    Zhao, HW
    Eapen, S
    [J]. BIOMETRICS, 2003, 59 (04) : 984 - 991
  • [32] On the asymptotic performance of median smoothers in image analysis and nonparametric regression
    Koch, I
    [J]. ANNALS OF STATISTICS, 1996, 24 (04): : 1648 - 1666
  • [33] Local polynomial regression smoothers with AR-error structure
    Vilar Fernández J.M.
    Francisco Fernández M.
    [J]. Test, 2002, 11 (2) : 439 - 464
  • [34] Local polynomial regression smoothers with AR-error structure
    Fernández, JMV
    Fernández, MF
    [J]. TEST, 2002, 11 (02) : 439 - 464
  • [35] Local regression smoothers with set-valued outcome data
    Li, Qiyu
    Molchanov, Ilya
    Molinari, Francesca
    Peng, Sida
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 128 : 129 - 150
  • [36] Estimating Explanatory Power in a Simple Regression Model Via Smoothers
    Wilcox, Rand R.
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2008, 7 (02) : 368 - 375
  • [37] Precise Learning Curves and Higher-Order Scaling Limits for Dot Product Kernel Regression
    Xiao, Lechao
    Hu, Hong
    Misiakiewicz, Theodor
    Lu, Yue M.
    Pennington, Jeffrey
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [38] Kernel smoothers: An overview of curve estimators for the first graduate course in nonparametric statistics
    Schucany, WR
    [J]. STATISTICAL SCIENCE, 2004, 19 (04) : 663 - 675
  • [39] Ridgelet kernel regression
    Yang, Shuyuan
    Wang, Min
    Jiao, Licheng
    [J]. NEUROCOMPUTING, 2007, 70 (16-18) : 3046 - 3055
  • [40] Kernel density regression
    Chen, Xin
    Ma, Xuejun
    Zhou, Wang
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 205 : 318 - 329