Beta kernel smoothers for regression curves

被引:1
|
作者
Chen, SX [1 ]
机构
[1] La Trobe Univ, Dept Stat Sci, Bundoora, Vic 3083, Australia
关键词
beta kernels; boundary bias; local linear regression; mean integrated square error; nonparametric regression;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes beta kernel smoothers for estimating curves with compact support by employing a beta family of densities as kernels. These beta kernel smoothers are free of boundary bias, achieve the optimal convergence rate of n(-4/5) for mean integrated squared error and always allocate non-negative weights. In the context of regression, a comparison is made between one of the beta smoothers and the local linear smoother. Its mean integrated squared error is comparable with that of the local linear smoother. Situations where the beta kernel smoother has a smaller mean integrated squared error are given. Extensions to probability density estimation are discussed.
引用
收藏
页码:73 / 91
页数:19
相关论文
共 50 条
  • [1] Twicing local linear kernel regression smoothers
    Zhang, Wenzhuan
    Xia, Yingcun
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (02) : 399 - 417
  • [2] Relative error prediction via kernel regression smoothers
    Jones, M. C.
    Park, Heungsun
    Shin, Key-Il
    Vines, S. K.
    Jeong, Seok-Oh
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (10) : 2887 - 2898
  • [3] Density adjusted kernel smoothers for random design nonparametric regression
    Muller, HG
    [J]. STATISTICS & PROBABILITY LETTERS, 1997, 36 (02) : 161 - 172
  • [4] Locally weighted regression with different kernel smoothers for software effort estimation
    Alqasrawi, Yousef
    Azzeh, Mohammad
    Elsheikh, Yousef
    [J]. SCIENCE OF COMPUTER PROGRAMMING, 2022, 214
  • [5] TESTING THE EQUALITY OF 2 REGRESSION-CURVES USING LINEAR SMOOTHERS
    KING, E
    HART, JD
    WEHRLY, TE
    [J]. STATISTICS & PROBABILITY LETTERS, 1991, 12 (03) : 239 - 247
  • [6] Mass recentred kernel smoothers
    Mammen, E
    Marron, JS
    [J]. BIOMETRIKA, 1997, 84 (04) : 765 - 777
  • [7] VARIABLE BANDWIDTH KERNEL ESTIMATORS OF REGRESSION-CURVES
    MULLER, HG
    STADTMULLER, U
    [J]. ANNALS OF STATISTICS, 1987, 15 (01): : 182 - 201
  • [8] Comparisons of Two Quantile Regression Smoothers
    Wilcox, Rand R.
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2016, 15 (01) : 62 - 77
  • [9] On consistency of redescending M-kernel smoothers
    Martin Hillebrand
    Christine H. Müller
    [J]. Metrika, 2006, 63 : 71 - 90
  • [10] On consistency of redescending M-kernel smoothers
    Hillebrand, M
    Müller, C
    [J]. METRIKA, 2006, 63 (01) : 71 - 90