Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data

被引:39
|
作者
Aguirre-Gutierrez, Jesus [1 ,2 ]
Rifal, Sami [1 ]
Shenkin, Alexander [1 ]
Oliveras, Imma [1 ]
Bentley, Lisa Patrick [3 ]
Svatek, Martin [4 ]
Girardin, Cecile A. J. [1 ]
Both, Sabine [5 ]
Riutta, Terhi [1 ,27 ]
Berenguer, Erika [1 ]
Kissling, W. Daniel [1 ,6 ]
Bauman, David [7 ]
Raab, Nicolas [1 ]
Moore, Sam [1 ]
Farfan-Rios, William [8 ,9 ,10 ]
Simoes Figueiredo, Axa Emanuelle [11 ]
Reis, Simone Matias [1 ,12 ]
Ndong, Josue Edzang [13 ]
Ondo, Fidele Evouna [13 ]
Bengone, Natacha N'ssi [14 ]
Mihindou, Vianet [14 ]
Moraes de Seixas, Marina Maria [15 ]
Adu-Bredu, Stephen [16 ]
Abemethy, Katharine [17 ,18 ]
Asner, Gregory P. [19 ]
Barlow, Jos [20 ,21 ]
Burstem, David F. R. P. [22 ]
Coomes, David A. [23 ]
Cernusak, Lucas A. [24 ]
Dargle, Greta C. [25 ]
Enquist, Brian J. [26 ]
Ewers, Robert M. [27 ]
Ferreira, Joice [21 ]
Jeffery, Kathryn J. [18 ]
Joly, Carlos A. [28 ,30 ]
Lewis, Simon L. [25 ,29 ]
Marimon-Junior, Ben Hur [9 ]
Martin, Roberta E. [19 ]
Morandi, Paulo S. [12 ]
Phillips, Oliver L. [25 ]
Quesada, Carlos A. [30 ]
Salinas, Norma [31 ]
Marimon, Beatriz Schwantes [9 ]
Silman, Miles [32 ]
Teh, Yit Arn [33 ]
White, Lee J. T. [18 ]
Malhi, Yadvinder [1 ]
机构
[1] Univ Oxford, Environm Change Inst, Sch Geog & Environm, Oxford, England
[2] Naturalis Biodivers Ctr, Biodivers Dynam, 1801 East Cotati Ave, Leiden, Netherlands
[3] Sonoma State Univ, Dept Biol, 1801 East Cotati Ave, Rohnert Pk, CA 94928 USA
[4] Mendel Univ Brno, Fac Forestry & Wood Technol, Dept Forest Bot Dendrol & Geobiocoenol, Brno, Czech Republic
[5] Univ New England, Environm & Rural Sci, Armidale, NSW 2351, Australia
[6] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam IBED, Amsterdam, Netherlands
[7] Univ Libre Bruxelles, Lab Ecol Vegetale & Biogeochim, CP 244, Brussels, Belgium
[8] Washington Univ St Louis, Living Earth Collaborat, St Louis, MO USA
[9] Missouri Bot Garden, Ctr Conservat & Sustainable Dev, St Louis, MO USA
[10] Univ Nacl San Antonio Abad Cusco, Herbario Vargas CUZ, Escuela Profes Biol, Cuzco, Peru
[11] Natl Inst Amazonian Res INPA, CP 2223, BR-69080971 Manaus, Amazonas, Brazil
[12] Univ Estado Mato Grosso, Lab Ecol Vegetal LABEV, Nova Xavantina, Brazil
[13] Agence Natl Parcs Nationaux, BP20379, Libreville, Gabon
[14] Minist Eaux Forets Mer & Environm, Libreville, Gabon
[15] Embrapa Amazonia Oriental, Trav Dr Eneas Pinheiro, BR-66095100 Belem, PA, Brazil
[16] CSIR Forestry Res Inst Ghana, POB 63, Kumasi, Ghana
[17] Inst Rech Ecol Trop, Libreville, Gabon
[18] Univ Stirling, Biol & Environm Sci, Stirling, Scotland
[19] Arizona State Univ, Ctr Global Discovery & Conservat Sci, Tempe, AZ USA
[20] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England
[21] MCT Museu Paraense Emilio Goeldi, Magalhaes Barata 376, BR-66040170 Belem, PA, Brazil
[22] Univ Aberdeen, Sch Biol Sci, Aberdeen, Scotland
[23] Univ Cambridge, Conservat Res Inst, Dept Plant Sci, Cambridge CB2 3QZ, England
[24] James Cook Univ, Coll Sci & Engn, Cairns, Qld 4878, Australia
[25] Univ Leeds, Sch Geog Ecol & Global Change, Leeds, W Yorkshire, England
[26] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ USA
[27] Imperial Coll London, Dept Life Sci, Ascot, Berks, England
[28] Univ Estadual Campinas, Inst Biol, Dept Biol Vegetal, Campinas, Brazil
[29] UCL, Dept Geog, London, England
[30] Inst Nacl de Pesquisas da Amazonia, Coordenacao Dinam Ambiental, Manaus, Amazonas, Brazil
[31] Pontificia Univ Catol Peru, Ave Univ 1801, Lima 32, Peru
[32] Wake Forest Univ, Dept Biol, Winston Salem, NC 27109 USA
[33] Newcastle Univ, Sch Nat & Environm Sci, Newcastle Upon Tyne, Tyne & Wear, England
基金
欧洲研究理事会; 英国自然环境研究理事会; 美国国家科学基金会;
关键词
Plant traits; Sentinel-2; Tropical forests; Random Forest; Pixel-level predictions; Image texture; IMAGING SPECTROSCOPY; TROPICAL FORESTS; LEAF-AREA; DIVERSITY; NITROGEN; BIODIVERSITY; ECOSYSTEMS; AFRICAN; BIOMASS; IMAGES;
D O I
10.1016/j.rse.2020.112122
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Tropical forest ecosystems are undergoing rapid transformation as a result of changing environmental conditions and direct human impacts. However, we cannot adequately understand, monitor or simulate tropical ecosystem responses to environmental changes without capturing the high diversity of plant functional characteristics in the species-rich tropics. Failure to do so can oversimplify our understanding of ecosystems responses to environmental disturbances. Innovative methods and data products are needed to track changes in functional trait composition in tropical forest ecosystems through time and space. This study aimed to track key functional traits by coupling Sentinel-2 derived variables with a unique data set of precisely located in-situ measurements of canopy functional traits collected from 2434 individual trees across the tropics using a standardised methodology. The functional traits and vegetation censuses were collected from 47 field plots in the countries of Australia, Brazil, Peru, Gabon, Ghana, and Malaysia, which span the four tropical continents. The spatial positions of individual trees above 10 cm diameter at breast height (DBH) were mapped and their canopy size and shape recorded. Using geo-located tree canopy size and shape data, community-level trait values were estimated at the same spatial resolution as Sentinel-2 imagery (i.e. 10 m pixels). We then used the Geographic Random Forest (GRF) to model and predict functional traits across our plots. We demonstrate that key plant functional traits can be accurately predicted across the tropicsusing the high spatial and spectral resolution of Sentinel-2 imagery in conjunction with climatic and soil information. Image textural parameters were found to be key components of remote sensing information for predicting functional traits across tropical forests and woody savannas. Leaf thickness ((R)2 = 0.52) obtained the highest prediction accuracy among the morphological and structural traits and leaf carbon content (R-2 = 0.70) and maximum rates of photosynthesis (R-2 = 0.67) obtained the highest prediction accuracy for leaf chemistry and photosynthesis related traits, respectively. Overall, the highest prediction accuracy was obtained for leaf chemistry and photosynthetic traits in comparison to morphological and structural traits. Our approach offers new opportunities for mapping, monitoring and understanding biodiversity and ecosystem change in the most species-rich ecosystems on Earth.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Monitoring of grassland productivity using Sentinel-2 remote sensing data
    Dusseux, Pauline
    Guyet, Thomas
    Pattier, Pierre
    Barbier, Valentin
    Nicolas, Herve
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 111
  • [2] Accurate modelling of canopy traits from seasonal Sentinel-2 imagery based on the vertical distribution of leaf traits
    Gara, Tawanda W.
    Darvishzadeh, Roshanak
    Skidmore, Andrew K.
    Wang, Tiejun
    Heurich, Marco
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 157 : 108 - 123
  • [3] Mapping a European Spruce Bark Beetle Outbreak Using Sentinel-2 Remote Sensing Data
    Dalponte, Michele
    Tatiana Solano-Correa, Yady
    Frizzera, Lorenzo
    Gianelle, Damiano
    [J]. REMOTE SENSING, 2022, 14 (13)
  • [4] Remote estimates of CDOM using Sentinel-2 remote sensing data in reservoirs with different trophic states across China
    Shang, Yingxin
    Liu, Ge
    Wen, Zhidan
    Jacinthe, Pierre-Andre
    Song, Kaishan
    Zhang, Bai
    Lyu, Lili
    Li, Sijia
    Wang, Xiang
    Yu, Xiangfei
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 286
  • [5] Remote Sensing of Turbidity in Optically Shallow Waters Using Sentinel-2 MSI and PRISMA Satellite Data
    Katlane, Rim
    Doxaran, David
    Elkilani, Boubaker
    Trabelsi, Chaima
    [J]. PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2024, 92 (04): : 431 - 447
  • [6] Mapping Tree Mortality Caused by Siberian Silkmoth Outbreak Using Sentinel-2 Remote Sensing Data
    Slinkina, Olga A.
    Mikhaylov, Pavel V.
    Sultson, Svetlana M.
    Demidko, Denis A.
    Khizhniak, Natalia P.
    Tatarintsev, Andrey I.
    [J]. FORESTS, 2023, 14 (12):
  • [7] Can we detect the damage of a heatwave on vineyards using Sentinel-2 optical remote sensing data?
    Reluy, Nuria Pantaleoni
    Baghdadi, Nicolas
    Simonneau, Thierry
    Bazzi, Hassan
    El Hajj, Marcel
    Pret, Valentin
    Amin, Ghaith
    Daret, Emilie
    [J]. OENO ONE, 2022, 56 (01) : 145 - 159
  • [8] MARIDA: A benchmark for Marine Debris detection from Sentinel-2 remote sensing data
    Kikaki, Katerina
    Kakogeorgiou, Ioannis
    Mikeli, Paraskevi
    Raitsos, Dionysios E. E.
    Karantzalos, Konstantinos
    [J]. PLOS ONE, 2022, 17 (01):
  • [9] Analysis of Lava from the Cumbre Vieja Volcano Using Remote Sensing Data from DESIS and Sentinel-2
    De Los Reyes, Raquel
    Richter, Rudolf
    Plank, Simon
    Marshall, David
    [J]. REMOTE SENSING, 2024, 16 (02)
  • [10] New tool for spatiotemporal image fusion in remote sensing - a case study approach using Sentinel-2 and Sentinel-3 data
    Mileva, Nikolina
    Mecklenburg, Susanne
    Gascon, Ferran
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXIV, 2018, 10789