Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data

被引:39
|
作者
Aguirre-Gutierrez, Jesus [1 ,2 ]
Rifal, Sami [1 ]
Shenkin, Alexander [1 ]
Oliveras, Imma [1 ]
Bentley, Lisa Patrick [3 ]
Svatek, Martin [4 ]
Girardin, Cecile A. J. [1 ]
Both, Sabine [5 ]
Riutta, Terhi [1 ,27 ]
Berenguer, Erika [1 ]
Kissling, W. Daniel [1 ,6 ]
Bauman, David [7 ]
Raab, Nicolas [1 ]
Moore, Sam [1 ]
Farfan-Rios, William [8 ,9 ,10 ]
Simoes Figueiredo, Axa Emanuelle [11 ]
Reis, Simone Matias [1 ,12 ]
Ndong, Josue Edzang [13 ]
Ondo, Fidele Evouna [13 ]
Bengone, Natacha N'ssi [14 ]
Mihindou, Vianet [14 ]
Moraes de Seixas, Marina Maria [15 ]
Adu-Bredu, Stephen [16 ]
Abemethy, Katharine [17 ,18 ]
Asner, Gregory P. [19 ]
Barlow, Jos [20 ,21 ]
Burstem, David F. R. P. [22 ]
Coomes, David A. [23 ]
Cernusak, Lucas A. [24 ]
Dargle, Greta C. [25 ]
Enquist, Brian J. [26 ]
Ewers, Robert M. [27 ]
Ferreira, Joice [21 ]
Jeffery, Kathryn J. [18 ]
Joly, Carlos A. [28 ,30 ]
Lewis, Simon L. [25 ,29 ]
Marimon-Junior, Ben Hur [9 ]
Martin, Roberta E. [19 ]
Morandi, Paulo S. [12 ]
Phillips, Oliver L. [25 ]
Quesada, Carlos A. [30 ]
Salinas, Norma [31 ]
Marimon, Beatriz Schwantes [9 ]
Silman, Miles [32 ]
Teh, Yit Arn [33 ]
White, Lee J. T. [18 ]
Malhi, Yadvinder [1 ]
机构
[1] Univ Oxford, Environm Change Inst, Sch Geog & Environm, Oxford, England
[2] Naturalis Biodivers Ctr, Biodivers Dynam, 1801 East Cotati Ave, Leiden, Netherlands
[3] Sonoma State Univ, Dept Biol, 1801 East Cotati Ave, Rohnert Pk, CA 94928 USA
[4] Mendel Univ Brno, Fac Forestry & Wood Technol, Dept Forest Bot Dendrol & Geobiocoenol, Brno, Czech Republic
[5] Univ New England, Environm & Rural Sci, Armidale, NSW 2351, Australia
[6] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam IBED, Amsterdam, Netherlands
[7] Univ Libre Bruxelles, Lab Ecol Vegetale & Biogeochim, CP 244, Brussels, Belgium
[8] Washington Univ St Louis, Living Earth Collaborat, St Louis, MO USA
[9] Missouri Bot Garden, Ctr Conservat & Sustainable Dev, St Louis, MO USA
[10] Univ Nacl San Antonio Abad Cusco, Herbario Vargas CUZ, Escuela Profes Biol, Cuzco, Peru
[11] Natl Inst Amazonian Res INPA, CP 2223, BR-69080971 Manaus, Amazonas, Brazil
[12] Univ Estado Mato Grosso, Lab Ecol Vegetal LABEV, Nova Xavantina, Brazil
[13] Agence Natl Parcs Nationaux, BP20379, Libreville, Gabon
[14] Minist Eaux Forets Mer & Environm, Libreville, Gabon
[15] Embrapa Amazonia Oriental, Trav Dr Eneas Pinheiro, BR-66095100 Belem, PA, Brazil
[16] CSIR Forestry Res Inst Ghana, POB 63, Kumasi, Ghana
[17] Inst Rech Ecol Trop, Libreville, Gabon
[18] Univ Stirling, Biol & Environm Sci, Stirling, Scotland
[19] Arizona State Univ, Ctr Global Discovery & Conservat Sci, Tempe, AZ USA
[20] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England
[21] MCT Museu Paraense Emilio Goeldi, Magalhaes Barata 376, BR-66040170 Belem, PA, Brazil
[22] Univ Aberdeen, Sch Biol Sci, Aberdeen, Scotland
[23] Univ Cambridge, Conservat Res Inst, Dept Plant Sci, Cambridge CB2 3QZ, England
[24] James Cook Univ, Coll Sci & Engn, Cairns, Qld 4878, Australia
[25] Univ Leeds, Sch Geog Ecol & Global Change, Leeds, W Yorkshire, England
[26] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ USA
[27] Imperial Coll London, Dept Life Sci, Ascot, Berks, England
[28] Univ Estadual Campinas, Inst Biol, Dept Biol Vegetal, Campinas, Brazil
[29] UCL, Dept Geog, London, England
[30] Inst Nacl de Pesquisas da Amazonia, Coordenacao Dinam Ambiental, Manaus, Amazonas, Brazil
[31] Pontificia Univ Catol Peru, Ave Univ 1801, Lima 32, Peru
[32] Wake Forest Univ, Dept Biol, Winston Salem, NC 27109 USA
[33] Newcastle Univ, Sch Nat & Environm Sci, Newcastle Upon Tyne, Tyne & Wear, England
基金
欧洲研究理事会; 英国自然环境研究理事会; 美国国家科学基金会;
关键词
Plant traits; Sentinel-2; Tropical forests; Random Forest; Pixel-level predictions; Image texture; IMAGING SPECTROSCOPY; TROPICAL FORESTS; LEAF-AREA; DIVERSITY; NITROGEN; BIODIVERSITY; ECOSYSTEMS; AFRICAN; BIOMASS; IMAGES;
D O I
10.1016/j.rse.2020.112122
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Tropical forest ecosystems are undergoing rapid transformation as a result of changing environmental conditions and direct human impacts. However, we cannot adequately understand, monitor or simulate tropical ecosystem responses to environmental changes without capturing the high diversity of plant functional characteristics in the species-rich tropics. Failure to do so can oversimplify our understanding of ecosystems responses to environmental disturbances. Innovative methods and data products are needed to track changes in functional trait composition in tropical forest ecosystems through time and space. This study aimed to track key functional traits by coupling Sentinel-2 derived variables with a unique data set of precisely located in-situ measurements of canopy functional traits collected from 2434 individual trees across the tropics using a standardised methodology. The functional traits and vegetation censuses were collected from 47 field plots in the countries of Australia, Brazil, Peru, Gabon, Ghana, and Malaysia, which span the four tropical continents. The spatial positions of individual trees above 10 cm diameter at breast height (DBH) were mapped and their canopy size and shape recorded. Using geo-located tree canopy size and shape data, community-level trait values were estimated at the same spatial resolution as Sentinel-2 imagery (i.e. 10 m pixels). We then used the Geographic Random Forest (GRF) to model and predict functional traits across our plots. We demonstrate that key plant functional traits can be accurately predicted across the tropicsusing the high spatial and spectral resolution of Sentinel-2 imagery in conjunction with climatic and soil information. Image textural parameters were found to be key components of remote sensing information for predicting functional traits across tropical forests and woody savannas. Leaf thickness ((R)2 = 0.52) obtained the highest prediction accuracy among the morphological and structural traits and leaf carbon content (R-2 = 0.70) and maximum rates of photosynthesis (R-2 = 0.67) obtained the highest prediction accuracy for leaf chemistry and photosynthesis related traits, respectively. Overall, the highest prediction accuracy was obtained for leaf chemistry and photosynthetic traits in comparison to morphological and structural traits. Our approach offers new opportunities for mapping, monitoring and understanding biodiversity and ecosystem change in the most species-rich ecosystems on Earth.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Monitoring Mangroves Using Sentinel-2 data
    Jadav, Ravindra
    Gogoi, Priti Rekha
    Hans, Aradhana Lucky
    Selvam, N. Thamizh
    Deobhanj, Sanghamitra
    Chetia, Monisha
    Unni, Anjana
    [J]. CURRENT SCIENCE, 2020, 118 (06): : 859 - 859
  • [22] Coastal Water Remote Sensing From Sentinel-2 Satellite Data Using Physical, Statistical, and Neural Network Retrieval Approach
    Marzano, Frank S.
    Iacobelli, Michele
    Orlandi, Massimo
    Cimini, Domenico
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 915 - 928
  • [23] Development of the grass LAI and CCC remote sensing-based models and their transferability using sentinel-2 data in heterogeneous grasslands
    Tsele, Philemon
    Ramoelo, Abel
    Qabaqaba, Mcebisi
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (08) : 2643 - 2667
  • [24] Remote sensing water quality inversion using sparse representation: Chlorophyll-a retrieval from Sentinel-2 MSI data
    Chu, Hone-Jay
    He, Yu-Chen
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2023, 31
  • [25] Object Based Remote Sensing Using Sentinel Data
    McLaughlin, Connor
    Woodley, Alan
    Geva, Shlomo
    Chappell, Timothy
    Kelly, Wayne
    Boles, Wageeh
    De Vine, Lance
    Hutson, Holly
    [J]. 2020 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2020,
  • [26] Comparing methods for mapping canopy chlorophyll content in a mixed mountain forest using Sentinel-2 data
    Ali, Abebe Mohammed
    Darvishzadeh, Roshanak
    Skidmore, Andrew
    Gara, Tawanda W.
    O'Connor, Brian
    Roeoesli, Claudia
    Heurich, Marco
    Paganini, Marc
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 87
  • [27] COMBINING UAS AND SENTINEL-2 DATA TO ESTIMATE CANOPY PARAMETERS OF A COTTON CROP USING MACHINE LEARNING
    Ashapure, Akash
    Jung, Jinha
    Oh, Sungchan
    Chang, Anjin
    Dube, Nothabo
    Landivar, Juan
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5199 - 5202
  • [28] Estimating canopy LAI and chlorophyll of tropical forest plantation (North India) using Sentinel-2 data
    Padalia, Hitendra
    Sinha, Sanjiv K.
    Bhave, Vipul
    Trivedi, Neeraj K.
    Kumar, A. Senthil
    [J]. ADVANCES IN SPACE RESEARCH, 2020, 65 (01) : 458 - 469
  • [29] USE WHAT IS THERE: WHAT CAN SENTINEL-2 DO FOR GEOLOGICAL REMOTE SENSING?
    van der Werff, Harald
    Hewson, Rob
    van der Meer, Freek
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8359 - 8362
  • [30] Integrating the Sentinel-1, Sentinel-2 and topographic data into soybean yield modelling using machine learning
    Amankulova, Khilola
    Farmonov, Nizom
    Omonov, Khasan
    Abdurakhimova, Mokhigul
    Mucsi, Laszlo
    [J]. ADVANCES IN SPACE RESEARCH, 2024, 73 (08) : 4052 - 4066