Remote Sensing of Turbidity in Optically Shallow Waters Using Sentinel-2 MSI and PRISMA Satellite Data

被引:3
|
作者
Katlane, Rim [1 ]
Doxaran, David [2 ]
Elkilani, Boubaker [2 ]
Trabelsi, Chaima [3 ]
机构
[1] Univ Mannouba, FLAH, Geomat & Geosyst LR19ES07, PRODIG,UMR 8586, Univ Campus, Manouba 2010, Tunisia
[2] Sorbonne Univ, CNRS, UMR7093, Lab Oceanog Villefranche, F-06230 Villefranche Sur Mer, France
[3] Univ Mannouba, FLAH, Geomat & Geosyst LR19ES07, Univ Campus, Manouba 2010, Tunisia
关键词
Inland water; Turbidity; Sentinel-2; PRISMA; Shallow water mask; ATMOSPHERIC CORRECTION; COASTAL WATERS; INLAND; ALGORITHM; CLASSIFICATION; IMAGERY; DEPTH; SHELF;
D O I
10.1007/s41064-023-00257-9
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This study aims to improve the retrieval and mapping of turbidity in optically shallow waters using satellite data by detecting then masking bottom-contaminated pixels. The methodology is developed based on multi-spectral Sentinel-2 MSI and hyper-spectral PRISMA high spatial resolution satellite data recorded over the lagoon and bay of Bizerte (Tunisia) and match-ups with field optical measurements. A mask is created to distinguish shallow water (bottom-contaminated) pixels from deep waters or turbid water pixels, using the water-leaving reflectance signal in the near-infrared spectral region (rhow_704 nm) with an empirically derived threshold value of 0.02. Match-ups between field and satellite data clearly identify rhow_560 (green spectral band of Sentinel-2 MSI) as the best proxy for water turbidity in the study area, using a robust empirical regional relationship. The satellite-derived turbidity values show a good agreement with in-situ measurements, with a coefficient of determination (R2) of 0.88 and a root mean square error (RMSE) of 0.122 NTU. These results highlight the reliability and accuracy of the turbidity algorithm, but also the efficiency of the shallow water (bottom contamination) mask, even though conditions with highly turbid waters in the bay or lagoon were not captured on available satellite images. They provide valuable quantitative insights for assessing water quality and improving understanding of the impact of human activities on marine ecosystems.
引用
收藏
页码:431 / 447
页数:17
相关论文
共 50 条
  • [1] Retrieval of Underwater Turbidity in Gyeonggi Bay Using Sentinel-2 Satellite Data
    Kim, Su-Ran
    Kim, Tae-Sung
    Park, Kyung-Ae
    Park, Jae-Jin
    Lee, Moon-Jin
    [J]. JOURNAL OF THE KOREAN EARTH SCIENCE SOCIETY, 2023, 44 (05): : 469 - 481
  • [2] Satellite-derived bathymetry in optically complex waters using a model inversion approach and Sentinel-2 data
    Casal, Gema
    Hedley, John D.
    Monteys, Xavier
    Harris, Paul
    Cahalane, Conor
    McCarthy, Tim
    [J]. ESTUARINE COASTAL AND SHELF SCIENCE, 2020, 241
  • [3] Remote sensing of tropical riverine water quality using sentinel-2 MSI and field observations
    Virdis, Salvatore G. P.
    Xue, Wenchao
    Winijkul, Ekbordin
    Nitivattananon, Vilas
    Punpukdee, Pongsakon
    [J]. ECOLOGICAL INDICATORS, 2022, 144
  • [4] Monitoring of grassland productivity using Sentinel-2 remote sensing data
    Dusseux, Pauline
    Guyet, Thomas
    Pattier, Pierre
    Barbier, Valentin
    Nicolas, Herve
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 111
  • [5] Remote sensing retrieval of secchi disk depth in Jiaozhou Bay using Sentinel-2 MSI image
    Yang, Lei
    Yu, Dingfeng
    Gao, Hao
    Bian, Xiaodong
    Liu, Xiaoyan
    Gai, Yingying
    An, Deyu
    Zhou, Yan
    Tang, Shilin
    [J]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2021, 50 (12):
  • [6] Remote sensing water quality inversion using sparse representation: Chlorophyll-a retrieval from Sentinel-2 MSI data
    Chu, Hone-Jay
    He, Yu-Chen
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2023, 31
  • [7] Remote Sensing of Turbidity for Lakes in Northeast China Using Sentinel-2 Images With Machine Learning Algorithms
    Ma, Yue
    Song, Kaishan
    Wen, Zhidan
    Liu, Ge
    Shang, Yingxin
    Lyu, Lili
    Du, Jia
    Yang, Qian
    Li, Sijia
    Tao, Hui
    Hou, Junbin
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 9132 - 9146
  • [8] EFFICIENT REMOTE SENSING TRANSFORMER FOR COASTLINE DETECTION WITH SENTINEL-2 SATELLITE IMAGERY
    Wang, Yuji
    Zhao, Ruojun
    Sun, Zijun
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5439 - 5442
  • [9] Remote Sensing of Grassland Biophysical Parameters in the Context of the Sentinel-2 Satellite Mission
    Sakowska, Karolina
    Juszczak, Radoslaw
    Gianelle, Damiano
    [J]. JOURNAL OF SENSORS, 2016, 2016
  • [10] Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data
    Aguirre-Gutierrez, Jesus
    Rifal, Sami
    Shenkin, Alexander
    Oliveras, Imma
    Bentley, Lisa Patrick
    Svatek, Martin
    Girardin, Cecile A. J.
    Both, Sabine
    Riutta, Terhi
    Berenguer, Erika
    Kissling, W. Daniel
    Bauman, David
    Raab, Nicolas
    Moore, Sam
    Farfan-Rios, William
    Simoes Figueiredo, Axa Emanuelle
    Reis, Simone Matias
    Ndong, Josue Edzang
    Ondo, Fidele Evouna
    Bengone, Natacha N'ssi
    Mihindou, Vianet
    Moraes de Seixas, Marina Maria
    Adu-Bredu, Stephen
    Abemethy, Katharine
    Asner, Gregory P.
    Barlow, Jos
    Burstem, David F. R. P.
    Coomes, David A.
    Cernusak, Lucas A.
    Dargle, Greta C.
    Enquist, Brian J.
    Ewers, Robert M.
    Ferreira, Joice
    Jeffery, Kathryn J.
    Joly, Carlos A.
    Lewis, Simon L.
    Marimon-Junior, Ben Hur
    Martin, Roberta E.
    Morandi, Paulo S.
    Phillips, Oliver L.
    Quesada, Carlos A.
    Salinas, Norma
    Marimon, Beatriz Schwantes
    Silman, Miles
    Teh, Yit Arn
    White, Lee J. T.
    Malhi, Yadvinder
    [J]. REMOTE SENSING OF ENVIRONMENT, 2021, 252