Better nonlinear models from noisy data: Attractors with maximum likelihood

被引:78
|
作者
McSharry, PE [1 ]
Smith, LA [1 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
D O I
10.1103/PhysRevLett.83.4285
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new approach to nonlinear modeling is presented which, by incorporating the global behavior of the model, lifts shortcomings of both least squares and total least squares parameter estimates. Although ubiquitous in practice, a least squares approach is fundamentally flawed in that it assumes independent, normally distributed (IND) forecast errors: nonlinear models will not yield IND errors even if the noise is IND. A new cost function is obtained via the maximum likelihood principle; superior results are illustrated both for small data sets and infinitely long data streams.
引用
收藏
页码:4285 / 4288
页数:4
相关论文
共 50 条
  • [41] Quasi maximum likelihood estimation of dynamic panel data models
    Phillips, Robert F.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (16) : 3970 - 3986
  • [42] Maximum likelihood estimation in semiparametric regression models with censored data
    Zeng, D.
    Lin, D. Y.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 507 - 536
  • [43] Maximum likelihood estimators in finite mixture models with censored data
    Miyata, Yoichi
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 56 - 64
  • [44] Influence measure in maximum likelihood estimate for models of lifetime data
    Poon, WY
    Tang, ML
    [J]. JOURNAL OF APPLIED STATISTICS, 2001, 28 (06) : 737 - 742
  • [45] Maximum likelihood estimation for dynamic factor models with missing data
    Jungbacker, B.
    Koopman, S. J.
    van der Wel, M.
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2011, 35 (08): : 1358 - 1368
  • [46] Marginal maximum likelihood estimation of SAR models with missing data
    Suesse, Thomas
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 120 : 98 - 110
  • [47] Maximum likelihood binary shift-register synthesis from noisy observations
    Utah State Univ, Logan, United States
    [J]. Annu Conf North Am Fuzzy Inf Process Soc NAFIPS, (100-104):
  • [48] Maximum likelihood binary shift-register synthesis from noisy observations
    Moon, TK
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3977 - 3980
  • [49] MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF MULTIPLE SINUSOIDS FROM NOISY MEASUREMENTS
    STOICA, P
    MOSES, RL
    FRIEDLANDER, B
    SODERSTROM, T
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (03): : 378 - 392
  • [50] RECONSTRUCTION OF THE SEQUENCE OF DIRACS FROM NOISY SAMPLES VIA MAXIMUM LIKELIHOOD ESTIMATION
    Hirabayashi, Akira
    Iwami, Takuya
    Maeda, Shuji
    Hironaga, Yosuke
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3805 - 3808