Better nonlinear models from noisy data: Attractors with maximum likelihood

被引:78
|
作者
McSharry, PE [1 ]
Smith, LA [1 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
D O I
10.1103/PhysRevLett.83.4285
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new approach to nonlinear modeling is presented which, by incorporating the global behavior of the model, lifts shortcomings of both least squares and total least squares parameter estimates. Although ubiquitous in practice, a least squares approach is fundamentally flawed in that it assumes independent, normally distributed (IND) forecast errors: nonlinear models will not yield IND errors even if the noise is IND. A new cost function is obtained via the maximum likelihood principle; superior results are illustrated both for small data sets and infinitely long data streams.
引用
收藏
页码:4285 / 4288
页数:4
相关论文
共 50 条
  • [11] Estimation of displacement vector field from noisy data using maximum likelihood estimator
    El Mehdi, Ismaih Aalaoui
    El Haj Elhassane, Ibn
    [J]. 2007 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS 1-4, 2007, : 1380 - +
  • [12] Maximum likelihood estimation of nonlinear structural equation models
    Lee, SY
    Zhu, HT
    [J]. PSYCHOMETRIKA, 2002, 67 (02) : 189 - 210
  • [13] Maximum likelihood estimation of nonlinear structural equation models
    Sik-Yum Lee
    Hong-Tu Zhu
    [J]. Psychometrika, 2002, 67 : 189 - 210
  • [14] Fitting Noisy Data to A Circle: A Simple Iterative Maximum Likelihood Approach
    Li, Wei
    Zhong, Jing
    Gulliver, T. Aaron
    Rong, Bo
    Hu, Rose Qingyang
    Qian, Yi
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,
  • [15] Application of maximum likelihood multivariate curve resolution to noisy data sets
    Dadashi, Mahsa
    Abdollahi, Hamid
    Tauler, Roma
    [J]. JOURNAL OF CHEMOMETRICS, 2013, 27 (1-2) : 34 - 41
  • [16] Simulated Pseudo Maximum Likelihood Identification of Nonlinear Models
    Abdalmoaty, Mohamed Rasheed
    Hjalmarsson, Hakan
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 14058 - 14063
  • [17] Maximum likelihood estimation in nonlinear mixed effects models
    Kuhn, E
    Lavielle, M
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 49 (04) : 1020 - 1038
  • [18] Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models
    Moulines, E
    Cardoso, JF
    Gassiat, E
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3617 - 3620
  • [19] A maximum likelihood approach for multisample nonlinear structural equation models with missing continuous and dichotomous data
    Song, Xin-Yuan
    Lee, Sik-Yum
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2006, 13 (03) : 325 - 351
  • [20] Data cloning: Maximum likelihood estimation of DSGE models
    Furlani, Luiz Gustavo C.
    Laurini, Marcio P.
    Portugal, Marcelo S.
    [J]. RESULTS IN APPLIED MATHEMATICS, 2020, 7