Generalized Bent Functions and Their Gray Images

被引:13
|
作者
Martinsen, Thor [1 ]
Meidl, Wilfried [2 ]
Stanica, Pantelimon [1 ]
机构
[1] Naval Postgrad Sch, Dept Appl Math, Monterey, CA 93943 USA
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, Altenbergerstr 69, A-4040 Linz, Austria
来源
基金
奥地利科学基金会;
关键词
D O I
10.1007/978-3-319-55227-9_12
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we prove that generalized bent (gbent) functions defined on F-2(n) with values in Z(2k) are regular, and show connections between the (generalized) Walsh spectrum of these functions and their components. Moreover we analyze generalized bent and semibent functions with values in Z(16) in detail, extending earlier results on gbent functions with values in Z(4) and Z(8).
引用
收藏
页码:160 / 173
页数:14
相关论文
共 50 条
  • [1] Full Characterization of Generalized Bent Functions as (Semi)-Bent Spaces, Their Dual, and the Gray Image
    Hodzic, Samir
    Meidl, Wilfried
    Pasalic, Enes
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (07) : 5432 - 5440
  • [2] Bent and generalized bent Boolean functions
    Pantelimon Stănică
    Thor Martinsen
    Sugata Gangopadhyay
    Brajesh Kumar Singh
    [J]. Designs, Codes and Cryptography, 2013, 69 : 77 - 94
  • [3] Bent and generalized bent Boolean functions
    Stanica, Pantelimon
    Martinsen, Thor
    Gangopadhyay, Sugata
    Singh, Brajesh Kumar
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2013, 69 (01) : 77 - 94
  • [4] On Generalized Bent Functions
    Helleseth, Tor
    Kholosha, Alexander
    [J]. 2010 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2010, : 178 - 183
  • [5] New classes of bent functions and generalized bent functions
    Kim, S
    Gil, GM
    No, JS
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2004, E87A (02): : 480 - 488
  • [6] On the Duals of Generalized Bent Functions
    Wang, Jiaxin
    Fu, Fang-Wei
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4770 - 4781
  • [7] Generalized partially bent functions
    Wang, Xiaolin
    Zhou, Jianqin
    [J]. PROCEEDINGS OF FUTURE GENERATION COMMUNICATION AND NETWORKING, MAIN CONFERENCE PAPERS, VOL 1, 2007, : 16 - 21
  • [8] A note of generalized bent functions
    Akyildiz, E
    Guloglu, IS
    Ikeda, M
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1996, 106 (01) : 1 - 9
  • [9] Generalized Boolean bent functions
    Poinsot, L
    Harari, S
    [J]. PROGRESS IN CRYPTOLOGY - INDOCRYPT 2004, PROCEEDINGS, 2004, 3348 : 107 - 119
  • [10] GENERALIZED BENT FUNCTIONS AND THEIR PROPERTIES
    KUMAR, PV
    SCHOLTZ, RA
    WELCH, LR
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 40 (01) : 90 - 107