Large deviations of avalanches in the raise and peel model

被引:1
|
作者
Povolotsky, A. M. [1 ,2 ]
Pyatov, P. [1 ,2 ]
Rittenberg, V. [3 ]
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[2] Natl Res Univ, Higher Sch Econ, 20 Myasnitskaya, Moscow 101000, Russia
[3] Univ Bonn, Phys Inst, Nussallee 12, D-53115 Bonn, Germany
关键词
avalanches; integrable spin chains and vertex models; large deviations in non-equilibrium systems; quantum integrability (Bethe Ansatz); ALTERNATING-SIGN MATRICES; O(1) LOOP MODEL; MARKOV PROCESS EXPECTATIONS; FINITE-SIZE CORRECTIONS; HEISENBERG CHAIN; ASYMPTOTIC EVALUATION; BOUNDARY-CONDITIONS; QUANTUM CHAINS; GROUND-STATES; LARGE TIME;
D O I
10.1088/1742-5468/aabc7a
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the large deviation functions for two quantities characterizing the avalanche dynamics in the raise and peel model: the number of tiles removed by avalanches and the number of global avalanches extending through the whole system. To this end, we exploit their connection to the groundstate eigenvalue of the XXZ model with twisted boundary conditions. We evaluate the cumulants of the two quantities asymptotically in the limit of the large system size. The first cumulants, the means, confirm the exact formulas conjectured from analysis of finite systems. We discuss the phase transition from critical to non-critical behaviour in the rate function of the global avalanches conditioned to an atypical value of the number of tiles removed by avalanches per unit time.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Avalanches in the raise and peel model in the presence of a wall
    Antillon, Edwin
    Wehefritz-Kaufmann, Birgit
    Kais, Sabre
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (26)
  • [2] Laws of large numbers in the raise and peel model
    Povolotsky, A. M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [3] The raise and peel model of a fluctuating interface
    de Gier, J
    Nienhuis, B
    Pearce, PA
    Rittenberg, V
    JOURNAL OF STATISTICAL PHYSICS, 2004, 114 (1-2) : 1 - 35
  • [4] Critical phases in the raise and peel model
    Jara, D. A. C.
    Alcaraz, F. C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [5] The Raise and Peel Model of a Fluctuating Interface
    Jan de Gier
    Bernard Nienhuis
    Paul A. Pearce
    Vladimir Rittenberg
    Journal of Statistical Physics, 2004, 114 : 1 - 35
  • [6] Diffferent facets of the raise and peel model
    Alcaraz, Francisco C.
    Rittenberg, Vladimir
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [7] Large rock avalanches: A kinematic model
    Zambrano O.M.
    Geotech. Geol. Eng., 2008, 3 (283-287): : 283 - 287
  • [8] Density profiles in the raise and peel model with and without a wall; physics and combinatorics
    Alcaraz, Francisco C.
    Pyatov, Pavel
    Rittenberg, Vladimir
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [9] On large deviations for the parabolic Anderson model
    M. Cranston
    D. Gauthier
    T. S. Mountford
    Probability Theory and Related Fields, 2010, 147 : 349 - 378
  • [10] Large deviations in testing Jacobi model
    Zhao, Shoujiang
    Gao, Fuqing
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (01) : 34 - 41