Large deviations of avalanches in the raise and peel model

被引:1
|
作者
Povolotsky, A. M. [1 ,2 ]
Pyatov, P. [1 ,2 ]
Rittenberg, V. [3 ]
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[2] Natl Res Univ, Higher Sch Econ, 20 Myasnitskaya, Moscow 101000, Russia
[3] Univ Bonn, Phys Inst, Nussallee 12, D-53115 Bonn, Germany
关键词
avalanches; integrable spin chains and vertex models; large deviations in non-equilibrium systems; quantum integrability (Bethe Ansatz); ALTERNATING-SIGN MATRICES; O(1) LOOP MODEL; MARKOV PROCESS EXPECTATIONS; FINITE-SIZE CORRECTIONS; HEISENBERG CHAIN; ASYMPTOTIC EVALUATION; BOUNDARY-CONDITIONS; QUANTUM CHAINS; GROUND-STATES; LARGE TIME;
D O I
10.1088/1742-5468/aabc7a
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the large deviation functions for two quantities characterizing the avalanche dynamics in the raise and peel model: the number of tiles removed by avalanches and the number of global avalanches extending through the whole system. To this end, we exploit their connection to the groundstate eigenvalue of the XXZ model with twisted boundary conditions. We evaluate the cumulants of the two quantities asymptotically in the limit of the large system size. The first cumulants, the means, confirm the exact formulas conjectured from analysis of finite systems. We discuss the phase transition from critical to non-critical behaviour in the rate function of the global avalanches conditioned to an atypical value of the number of tiles removed by avalanches per unit time.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Large deviations for cascades and cascades of large deviations
    Rouault, A
    MATHEMATICS AND COMPUTER SCIENCE III: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2004, : 351 - 362
  • [32] A model for frictional melt production beneath large rock avalanches
    De Blasio, Fabio Vittorio
    Elverhoi, Anders
    JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2008, 113 (F2)
  • [33] Avalanches and scaling collapse in the large-N Kuramoto model
    Coleman, J. Patrick
    Dahmen, Karin A.
    Weaver, Richard L.
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [34] Large Deviations for the Extended Heston Model: The Large-Time Case
    Jacquier A.
    Mijatović A.
    Asia-Pacific Financial Markets, 2014, 21 (3) : 263 - 280
  • [35] Large deviations for the one-dimensional Edwards model
    van der Hofstad, R
    den Hollander, F
    König, W
    ANNALS OF PROBABILITY, 2003, 31 (04): : 2003 - 2039
  • [36] Large and moderate deviations in testing Rayleigh diffusion model
    Kuang, Nenghui
    Xie, Huantian
    STATISTICAL PAPERS, 2013, 54 (03) : 591 - 603
  • [37] Large deviations for the perceptron model and consequences for active learning
    Cui, Hugo
    Saglietti, Luca
    Zdeborova, Lenka
    MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 107, 2020, 107 : 390 - 430
  • [38] Large deviations in the perceptron model and consequences for active learning
    Cui H.
    Saglietti L.
    Zdeborov'A L.
    Machine Learning: Science and Technology, 2021, 2 (04):
  • [39] Large deviations of the interference. in a wireless communication model
    Ganesh, Ayalvadi J.
    Torrisi, Giovanni Luca
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (08) : 3505 - 3517
  • [40] Distances and large deviations in the spatial preferential attachment model
    Hirsch, Christian
    Moench, Christian
    BERNOULLI, 2020, 26 (02) : 927 - 947