On large deviations for the parabolic Anderson model

被引:0
|
作者
M. Cranston
D. Gauthier
T. S. Mountford
机构
[1] University of California,Department of Mathematics
[2] DMA,undefined
[3] EPFL,undefined
来源
关键词
Parabolic Anderson model; FKG inequality; Large deviations; Random media; Primary 60F10; 60K37; Secondary 60K35;
D O I
暂无
中图分类号
学科分类号
摘要
The focus of this article is on the different behavior of large deviations of random functionals associated with the parabolic Anderson model above the mean versus large deviations below the mean. The functionals we treat are the solution u(x, t) to the spatially discrete parabolic Anderson model and a functional An which is used in analyzing the a.s. Lyapunov exponent for u(x, t). Both satisfy a “law of large numbers”, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lim_{t\to \infty} \frac{1}{t} \log u(x,t)=\lambda (\kappa)}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lim_{n\to \infty} \frac{A_n}{n}=\alpha}$$\end{document}. We then think of αn and λ(κ)t as being the mean of the respective quantities An and log u(t, x). Typically, the large deviations for such functionals exhibits a strong asymmetry; large deviations above the mean take on a different order of magnitude from large deviations below the mean. We develop robust techniques to quantify and explain the differences.
引用
收藏
页码:349 / 378
页数:29
相关论文
共 50 条
  • [1] On large deviations for the parabolic Anderson model
    Cranston, M.
    Gauthier, D.
    Mountford, T. S.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2010, 147 (1-2) : 349 - 378
  • [2] Large Deviations of the Lyapunov Exponent and Localization for the 1D Anderson Model
    Jitomirskaya, Svetlana
    Zhu, Xiaowen
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (01) : 311 - 324
  • [3] Large Deviations of the Lyapunov Exponent and Localization for the 1D Anderson Model
    Svetlana Jitomirskaya
    Xiaowen Zhu
    [J]. Communications in Mathematical Physics, 2019, 370 : 311 - 324
  • [4] Ageing in the parabolic Anderson model
    Moerters, Peter
    Ortgiese, Marcel
    Sidorova, Nadia
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (04): : 969 - 1000
  • [5] The parabolic Anderson model on the hypercube
    Avena, Luca
    Guen, Onur
    Hesse, Marion
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (06) : 3369 - 3393
  • [6] A singular parabolic Anderson model
    Mueller, C
    Tribe, R
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2004, 9 : 98 - 144
  • [7] Uniform large deviations for parabolic SPDEs and applications
    Chenal, F
    Millet, A
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 72 (02) : 161 - 186
  • [8] Large time asymptotics for the parabolic Anderson model driven by spatially correlated noise
    Huang, Jingyu
    Le, Khoa
    Nualart, David
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (03): : 1305 - 1340
  • [9] Time correlations for the parabolic Anderson model
    Gaertner, Juergen
    Schnitzler, Adrian
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 1519 - 1548
  • [10] The Universality Classes in the Parabolic Anderson Model
    Remco van der Hofstad
    Wolfgang König
    Peter Mörters
    [J]. Communications in Mathematical Physics, 2006, 267 : 307 - 353