Kernel Density Estimation with Missing Data: Misspecifying the Missing Data Mechanism

被引:0
|
作者
Dubnicka, Suzanne R. [1 ]
机构
[1] Kansas State Univ, Dept Stat, Manhattan, KS 66506 USA
关键词
Horvitz-Thompson estimator; Missing at random; Robustness; CAUSAL INFERENCE; MODELS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper explores additional properties of an inverse propensity score weighted kernel density estimator for estimating the density of incomplete data. This estimator is based on the Horvitz-Thompson estimator and requires estimating the propensity score assuming the response variable is missing at random. Nonparametric methods are used to estimate the propensity scores. Implications of misspecifying the missing data mechanism on the performance of the density estimator are discussed and evaluated. In addition, an augmented inverse propensity score weighted kernel density estimator, which is not influenced by this misspecification, is proposed and evaluated.
引用
下载
收藏
页码:114 / 135
页数:22
相关论文
共 50 条
  • [41] Asymptotic Normality of Nonparametric Kernel Regression Estimation for Missing at Random Functional Spatial Data
    Alshahrani, Fatimah
    Almanjahie, Ibrahim M.
    Benchikh, Tawfik
    Fetitah, Omar
    Attouch, Mohammed Kadi
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [42] Parameter estimation from incomplete data in binomial regression when the missing data mechanism is nonignorable
    Ibrahim, JG
    Lipsitz, SR
    BIOMETRICS, 1996, 52 (03) : 1071 - 1078
  • [43] Maximum likelihood estimation of linear SISO models subject to missing output data and missing input data
    Wallin, Ragnar
    Hansson, Anders
    INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (11) : 2354 - 2364
  • [44] Nonlinear wavelet density estimation with data missing at random when covariates are present
    Zou, Yu-Ye
    Liang, Han-Ying
    Zhang, Jing-Jing
    METRIKA, 2015, 78 (08) : 967 - 995
  • [45] Automated outlier detection and estimation of missing data
    Rhyu, Jinwook
    Bozinovski, Dragana
    Dubs, Alexis B.
    Mohan, Naresh
    Bende, Elizabeth M. Cummings
    Maloney, Andrew J.
    Nieves, Miriam
    Sangerman, Jose
    Lu, Amos E.
    Hong, Moo Sun
    Artamonova, Anastasia
    Ou, Rui Wen
    Barone, Paul W.
    Leung, James C.
    Wolfrum, Jacqueline M.
    Sinskey, Anthony J.
    Springs, Stacy L.
    Braatz, Richard D.
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 180
  • [46] Parameter estimation for ARX models with missing data
    Horner, M.
    Pakzad, S. N.
    LIFE-CYCLE OF ENGINEERING SYSTEMS: EMPHASIS ON SUSTAINABLE CIVIL INFRASTRUCTURE, 2017, : 2138 - 2144
  • [47] Estimation with missing data: beyond double robustness
    Han, Peisong
    Wang, Lu
    BIOMETRIKA, 2013, 100 (02) : 417 - 430
  • [48] Integrative missing value estimation for microarray data
    Jianjun Hu
    Haifeng Li
    Michael S Waterman
    Xianghong Jasmine Zhou
    BMC Bioinformatics, 7
  • [49] ON ESTIMATION OF MISSING DATA IN MULTIVARIATE LINEAR MODEL
    MCDONALD, L
    BIOMETRICS, 1971, 27 (03) : 535 - &
  • [50] ESTIMATION OF MISSING DATA IN MULTIVARIATE LINEAR MODEL
    MCDONALD, L
    ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (05): : 1791 - &