Kernel Density Estimation with Missing Data: Misspecifying the Missing Data Mechanism

被引:0
|
作者
Dubnicka, Suzanne R. [1 ]
机构
[1] Kansas State Univ, Dept Stat, Manhattan, KS 66506 USA
关键词
Horvitz-Thompson estimator; Missing at random; Robustness; CAUSAL INFERENCE; MODELS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper explores additional properties of an inverse propensity score weighted kernel density estimator for estimating the density of incomplete data. This estimator is based on the Horvitz-Thompson estimator and requires estimating the propensity score assuming the response variable is missing at random. Nonparametric methods are used to estimate the propensity scores. Implications of misspecifying the missing data mechanism on the performance of the density estimator are discussed and evaluated. In addition, an augmented inverse propensity score weighted kernel density estimator, which is not influenced by this misspecification, is proposed and evaluated.
引用
收藏
页码:114 / 135
页数:22
相关论文
共 50 条
  • [31] HOW EFFICIENT IS ESTIMATION WITH MISSING DATA?
    Karadogan, Seliz G.
    Marchegiani, Letizia
    Hansen, Lars Kai
    Larsen, Jan
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2260 - 2263
  • [32] Robust nonparametric estimation with missing data
    Boente, Graciela
    Gonzalez-Manteiga, Wenceslao
    Perez-Gonzalez, Ana
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 571 - 592
  • [33] SPATIAL APPROACH TO ESTIMATION OF MISSING DATA
    BENZVI, M
    KESLER, S
    JOURNAL OF HYDROLOGY, 1986, 88 (1-2) : 69 - 78
  • [34] Wavelet estimation of density for censored data with censoring indicator missing at random
    Zou, Yu-Ye
    Liang, Han-Ying
    STATISTICS, 2017, 51 (06) : 1214 - 1237
  • [35] Probability density estimation for survival data with censoring indicators missing at random
    Wang, Qihua
    Liu, Wei
    Liu, Chunling
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (05) : 835 - 850
  • [36] Probability density estimation with data missing at random when covariables are present
    Wang, Qihua
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (03) : 568 - 587
  • [37] SUBSPACE DETECTION IN A KERNEL SPACE: THE MISSING DATA CASE
    Wu, Tong
    Bajwa, Waheed U.
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 93 - 96
  • [38] Kernel classification with missing data and the choice of smoothing parameters
    Levon Demirdjian
    Majid Mojirsheibani
    Statistical Papers, 2019, 60 : 1487 - 1513
  • [39] Missing data as data
    Basiri, Anahid
    Brunsdon, Chris
    PATTERNS, 2022, 3 (09):
  • [40] Kernel classification with missing data and the choice of smoothing parameters
    Demirdjian, Levon
    Mojirsheibani, Majid
    STATISTICAL PAPERS, 2019, 60 (05) : 1487 - 1513