Derivations of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring

被引:14
|
作者
Wang, Dengyin [1 ]
Ou, Shikun [1 ]
Yu, Qiu [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Xuzhou 221008, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2006年 / 54卷 / 05期
基金
中国国家自然科学基金;
关键词
intermediate Lie algebras; derivations of Lie algebras; commutative rings;
D O I
10.1080/03081080500412463
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an arbitrary commutative ring with identity, gl(n, R) the general linear Lie algebra over R consisting of all n x n matrices over R and with the bracket operation [x, y] = xy - yx, t (resp., u) the Lie subalgebra of gl(n, R) consisting of all n x n upper triangular (resp., strictly upper triangular) matrices over R and d the Lie subalgebra of gl(n, R) consisting of all n x n diagonal matrices over R. The aim of this article is to give an explicit description of the derivation algebras of the intermediate Lie algebras between d and t.
引用
收藏
页码:369 / 377
页数:9
相关论文
共 50 条
  • [21] TRIANGULAR CONFIGURATIONS AND LIE ALGEBRAS OF STRICTLY UPPER-TRIANGULAR MATRICES
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2014, 13 (01) : 62 - 70
  • [22] Transposed Poisson structures on the Lie algebra of upper triangular matrices
    Kaygorodov, Ivan
    Khrypchenko, Mykola
    PORTUGALIAE MATHEMATICA, 2024, 81 (1-2) : 135 - 149
  • [23] Group gradings on the Lie and Jordan algebras of upper triangular matrices
    Hitomi E.
    Koshlukov P.
    Yasumura F.
    São Paulo Journal of Mathematical Sciences, 2017, 11 (2) : 326 - 347
  • [24] Gradings on the algebra of triangular matrices as a Lie algebra: Revisited
    Koshlukov, Plamen
    Yasumura, Felipe Yukihide
    JOURNAL OF ALGEBRA, 2025, 664 : 756 - 779
  • [25] The computation of abelian subalgebras in the Lie algebra of upper-triangular matrices
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2008, 16 (01): : 59 - 66
  • [26] Linear Lie centralizers of the algebra of dominant block upper triangular matrices
    Ghimire, Prakash
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5040 - 5051
  • [27] LINEAR LIE CENTRALIZERS OF THE ALGEBRA OF STRICTLY BLOCK UPPER TRIANGULAR MATRICES
    Ghimire, Prakash
    OPERATORS AND MATRICES, 2021, 15 (01): : 303 - 311
  • [28] Lie triple centralizers of the algebra of dominant block upper triangular matrices
    Ghimire, Prakash
    Benavides, Magdalena
    King, Sheral
    Young, Lavona
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (01): : 163 - 175
  • [29] STRONG COMMUTATIVITY PRESERVING MAPS OF UPPER TRIANGULAR MATRIX LIE ALGEBRAS OVER A COMMUTATIVE RING
    Chen, Zhengxin
    Zhao, Yu'e
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (04) : 973 - 981
  • [30] Derivations of the parabolic subalgebras of the general linear Lie algebra over a commutative ring
    Wang, Dengyin
    Yu, Qiu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) : 763 - 774